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Abstract

In this draft, we discuss the finite determinacy and universal unfolding for the steady-state
bifurcations of two truncated Hopf-zero normal form families. These are the most generic cases
obtained in [1]. We prove that the simplest truncated orbital normal forms admit a family of first
integrals. As a consequence, a family of invariant manifolds arises for the differential normal form
system.

We first deal with its finite determinacy of the steady-state solutions of the reduced planar differential
system and, then, present a one-parametric family of first integrals for the normal form system associated
with case s < r. Next, we do the same for the family associated with » = s in Proposition and
Theorem [0.3]

We here discuss what is the suitable truncation degree. This brings up the jet sufficiency problem
for normal forms computations. We employ results from singularity theory |2, Definition 7.1, Proposition
1.4, Theorem 7.2 and Theorem 7.4] to derive such jet sufficiency results for the most generic normal form
systems, i.e., s = 1 and arbitrary » > 1. Let ¢ be either the identity group or the group generated by I'
where I' : (x, p,8) — (x,—p, 0). The differential system
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is -equivariant. Then, we recall a strong ¥-equivalence relation from [2, page 166] as follows. We say that
G and H are strong ¢-equivalent if and only if there are invertible matrix S(x, p, A) and invertible coordi-
nate changes (z, p, \) — (X (x, p, A), o(z, p, A), A) so that G(z, p, \) = S(x, p, \)H (X (z, p, A), o(x, p, A), ) .
Here, X(0,0,0) =0, 0(0,0,0) =0, and for all g € ¥,

X(z,g9p,\) = gX(x,p,N), o(x,gp, ) = go(x,p, ), S(x,gp,\)g = gS(x,p, A)

while S(0,0,0), (dX)o,0,0, and (dg)o,o,0 are scalar multiples of the identity matrix.
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Denote &, for the local ring of all 4-invariant smooth germs in (x, p, A\)-variables. Further, the
unique maximal ideal M in &, , ) is generated by M =< z,p,\ >. Define M as a &, \-module
generated by

Wik <($kﬂﬂ7k> ( v ) ‘ 0<i,j, andi+j< I<:> C &), (0.2)

0 k=i pi \i

%
Here, Zﬂ oA(9) stands for the smooth ¢-equivariant germ vector fields. The ideal M includes all ¥-
equwarlant ﬁat vector fields and M* (for k € N) constitutes a decreasing chain sequence of &, , \-modules,

7 e., Mk+1 C Mk

Theorem 0.1 (Cases (s = 1,7 > 1)). Let by # 0. Then, the map G(z,p,\) = (A4 2p* + biz?, Lup)
—>

is strongly 4 -equivalent to G + p for any p € M3. In other words, M?> C P2(G,9). In particular, the

steady-state solutions are two determined.

Proof. Recall that &, \- module Ks(¥) is generated by ./\/l(%l), M(GOI), M(Goz), M(CSQ), MQ(gZ), and

MZ(GI”) We claim that ./\/l C Ks(9). Thereby for any p € ./\_/l>3 C Ks(9), G+ p is strongly ¢-equivalent
with G The latter claim follows from |2, Theorem 7.2, page 205]. Indeed, the higher order term module
2(G, %)_)mcludes the mtrmsm ¢-equivariant &, y-submodule of K (g ). For any ¢- _)equlvarlant Erp-
module ., the inclusion 7 C Ks(9) is equivalent with the inclusion 7 C Ks(9)+ M.#. This is the basis
of our arguments in the proof for here and also for that of Theorem [0.3] We introduce an equivalence
relation >~ on &, , (%) defined by

for every A, B € &,,7(%), A~B ifandonlyif A—Be M. (0.3)

e - =
Hence, we let . := M3 and b, := 2 without loss of generality. Thus, M.# = M*. Further, let 4 be
the identity group; the proof for ¢ := <F> readily requires some minor modifications. Therefore, ICs(¥)
includes vector field germs generated by
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Therefore, all these terms belong to Ky (¥4) + M} Now we consider
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G G 0 0 0 0 0
2 1p . 2 —
and x (Ggp) dx ( 0 ) (x3) . These also conclude that (,02/\) , (p)\Q) , (x/\Q) , and (xg)

belong to Ks(¥) +M7- Next, recall that x,g)\ € K4(%) and on the other hand, we have A\x glp =
2p
0

(‘iiﬁé’) € K4(9). These imply that (/\22> € Ks(9). Further, \? (691) = (/\3) € K@) + M.

2
Therefore, we have proved that all generators of .# are included in K4(¥¢) + M.#. This completes the

proof by Nakayama lemma. O]

Proposition 0.2 (Normal form first integrals for cases s < r). Consider a s+ 1-degree truncation of the
planar differential system (0.1)) coupled with @ =1+ >"7 | (c; +w;)z’ and let p; =0 for all 2 < i < 2s+1.
This system admits a family of normal form first integrals given by

I(2, p. ) 1= gy 27 (2202 4 oy + b)) (0.4)

Proof. We have
&=y +2p% + bt p=1baty, =1+ Yo (i w2
Thereby, we have
Mdzx + Ndp := $b,a®pdx — (p1 + 2p* + bsa*™) dp = 0. (0.5)

Next, we employ an integrating factor derived by
—3-92g M, — N:p
uzexp<f—% (8+%)dp> = p~*72%, where ”_—M:—% (s+3).

This leads to

1
ébsxs,o’%%dx — (1 + 207 + bz®t ) p7*dp = 0.

Solving this first order equation gives rise to the first integral given by I(x, p, 1) in equation (0.4). O

1
Theorem 0.3 (Case r = s = 1). Let G(x,p,\) = (G1,Gs) := ()\ +a12? + 2p% + b12?, —ayzp + §blxp)

—)
for a1_>7£ —by and 2ay # by. Then, M? C P(G,¥9). Besides, G is strongly 4 -equivalent to G + p for any
p € M3. Assume that F is a smooth function and its two jet is the same as G. Then, the steady-state
analysis of any system associated with F' is two determined.

Proof. Recall that Ks(¢9) C Z(G,¥). Thus, it suffices to show that M? C Ks(¥). Let 7 = M? and
apply the equivaglce relation ~, that is defined on ?:r,p, A(¥) by equation (0.3). Hence, A ~ B if and
only if A— B € M*. Then,

3 2
\2 (Gol) ~ (2) cK(D)+ MI, 2 (C;l) ~ (Ag’ ) € K.() + M.

2
and p? (%1) ~ ()\g ) € Ks(9) + M} while due to by — 2a; # 0,

2 (0) [0 2% (0N [0
by — 2aq (G2> B (952/)) € k@), by — 2a, (Gz) B <5UP2> € Kl

3
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and \ 0 - 0 € K.(¥). Since 22 G ) _ 0 = 2(a;+0by) v and a;+b; # 0
G2 (%bl — (Il) )\.l?ﬂ s ' ng G2 ! ! 0 ! ! ’

2 5 [ G1p 0 4p* G, 0\ _
( 0 ) € Ks(¥¢). Moreover, we have p (G2p G, 0 Ks(9), and zp G2p )=

? 2
(456/) ) € Ks(¢). The later deduces that <b1 2(11 3) = p? (glz) 2ay +by) (g;g ) € K.(#). On the
2 2x

other hand,

xA(Cél) ~ (“"32) € K(9)+ ML A ( ) <A;”> 9) + M,

and x,o( ) ()‘xp) (g)+/\/l4 However, for the cases of o ’0) and ( 03> we have mp (G1x> —
4

GQ{L’
i 0 T 22 G 2 0
2(a1+b1) (G ) = ( 0p> € ]Cs<g> and bl 2a1 (G;Z) - b1—22a1 ( p) - (1‘3> S Ks(g) Further, we
have
Gy Gi\ by —2a, (0 o [ Gy G, by —2a; [ 0
AT (Ggp)_4)\p(0)_—2 (:E2/\>’ A Go, — 4xp 0 —— (2

and \p (g;x) —2(a;+by)zxp <%1> ~ b=Za ()\(/])2) . Thereby, (x()]\z) : (xg)\> , and ()\(/])2) € Ks(9)+

— —
M?*. Now the remaining vector field generators for M? are ( 0 ) and (p())\Q . Since (x(/)\g) € K, and

12

)\3
G P 0 0
2 1z _ 5 N
A (ng) = </\2p) € ICs, these express that (p)\Q) € K. Then, A a )= ()\5) € Ks(¥¢). These

H
conclude that all _V>ect0r field generators of M3 are included in K (¥4) + M.#. Finally, by the Nakayama
lemma, we have . C K4(¥) and this completes the proof. ]

Theorem 0.4. Let 4 = <F> Then, the equivariant tangent space for bifurcation problem
1
F: (f17 f2) = ()\ + all‘Q + 2p2 -+ b1x27 —ai1xrp + §blxp) (06)

is given by T(F,9) = MQ(%) + R(Q((aﬁ;ll ) + c%( ) for ay # —by and by # 2ay. Thus, the universal

unfolding for (fi, f2) with respect to strong equivalence relation is given by (G, G2) = (fi1 +nx, fo — ).

Proof. Consider F' = (p, qp) := [p, q] where v := p? and u := z. Then, RT(F, Z,) is generated by [2, Table
3.1, Page 177] as follows

span {[p, 0], [vq, 0], [0, p], 0, ql, [upu, uqu], [vPu, Vqul, [ADus Aqul, [VPw, v} - (0.7)

We apply Nalgyama Lemma to prove that M? (¢) C RT(F,Z). Hence, we need to show that HQ(% -
RT(F, Zy) + M3(4). We have

L == (), Lppeval= (7)., o= (X T l@T A2
2(a1+b1) pua QU q - 0 ) 2 pva Qv - O 9 p> - 0 3

and these lead to the conclusion that

(%2) (%2>, (AOQ) € RT(F, Z,) + M*(%).
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Further, we have b1_22a1 0,q] = (xop) € RT(F, Z,) and

2 2 8(ay + by) }:<0

bl — 2CL1 UPu; bl — 2&1 V= (bl — 2(1,1)2p p3
Since x[p,0] € RT(F, Zs), (’\Ox) € RT(F, Zy) + /T/l>3(€4) Hence, the equality

2(a1 + by)xA
A uv/\ ul —

implies that (;)p) € RT(F, Zy) + /\—/l>3(%) On the other hand, HQ(g) is generated by

() () 6)- ()G G- ()

Hence, M2(%) € RT(F,%). This and [p, 0] = (M9 +2041%) ¢ RT(F ) imply that

) € RT(F, Zy).

) € RT(F, Z,) (0.8)

RT(F,9) = M) + &, (3)

By [2, Page 212 and 213], the corresponding equivariant tangent space follows
T(F,9) = RI(F\9)+R{[pu, qul} + &{[pr, ]}

Here, [pu, qu) = [2(a1 4+ b1)z, 2 — a1] = (?g;f:j;i) and [p, q»] = [1,0] = (;). Thus,

1 2(&1 + bl)[L') —79 (1) (2(&1 + bl)$>
T(F,9) = RI(F,9)+ & +R = M(¥Y)+ & +R . (0.9
ro) = mEa+a(o) (G0 =B+ a ) R (G000 00
Since by # 0, we have T'(F,¥) & R(_‘ﬁp) = ?(g) This completes the proof. O

Proposition 0.5 (Normal form first integrals for cases r = s). Consider the r + 1-truncation of the
normal form differential system given by

2r T r—1
i = 208 +a 2" + bt + Z apxFtt + Z it Z Pigrg1Z L (0.10)
k=r+1 i=1 i=0

2r r . r—1
. 1 r aT(T + 1) r ak(k + 1) k (Z B 1) i—2 1 )
p o= Sy Sy 5 sl Dy SO IS
k=r+1 =1 1=0
where the parameters p; = 0 fori # 1. Then, this system admits a one-parametric family of normal form
first integrals given by
2(2arr+brr+2ar)

2(r+1)(ar+br) 2(r+1)(ar+br)

P arr+ar—by, arrta— _ arr+ar—by arrta,— _ arr+ar—br .r+1 arrtan—
L@, p) = i Tsa P T R by P e — Sy p et e (0.11)
Proof. The proof is similar to the proof of Proposition [0.2] and is omitted for briefness. O]
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