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Abstract

In this draft, we discuss the finite determinacy and universal unfolding for the steady-state
bifurcations of two truncated Hopf-zero normal form families. These are the most generic cases
obtained in [1]. We prove that the simplest truncated orbital normal forms admit a family of first
integrals. As a consequence, a family of invariant manifolds arises for the differential normal form
system.

We first deal with its finite determinacy of the steady-state solutions of the reduced planar differential

system and, then, present a one-parametric family of first integrals for the normal form system associated

with case s < r. Next, we do the same for the family associated with r = s in Proposition 0.5 and

Theorem 0.3.

We here discuss what is the suitable truncation degree. This brings up the jet sufficiency problem

for normal forms computations. We employ results from singularity theory [2, Definition 7.1, Proposition

1.4, Theorem 7.2 and Theorem 7.4] to derive such jet sufficiency results for the most generic normal form

systems, i.e., s = 1 and arbitrary r ≥ 1. Let G be either the identity group or the group generated by Γ

where Γ : (x, ρ, θ) 7→ (x,−ρ, θ). The differential system

ẋ = µ1 + 2ρ2 + bsx
s+1 +

2s∑
k=s+1

bkx
k+1 +

s∑
i=2

µix
i−1 +

s−1∑
i=0

µs+2+ix
i+1, (0.1)

ρ̇ =
bs
2
xsρ+

2s∑
k=s+1

bk
2
xkρ−

s∑
i=2

(i− 1)

2
µix

i−2ρ+
1

2

s−1∑
i=0

µs+2+ix
iρ,

is G -equivariant. Then, we recall a strong G -equivalence relation from [2, page 166] as follows. We say that

G and H are strong G -equivalent if and only if there are invertible matrix S(x, ρ, λ) and invertible coordi-

nate changes (x, ρ, λ) 7→ (X(x, ρ, λ), %(x, ρ, λ), λ) so thatG(x, ρ, λ) = S(x, ρ, λ)H (X(x, ρ, λ), %(x, ρ, λ), λ) .

Here, X(0, 0, 0) = 0, %(0, 0, 0) = 0, and for all g ∈ G ,

X(x, gρ, λ) = gX(x, ρ, λ), %(x, gρ, λ) = g%(x, ρ, λ), S(x, gρ, λ)g = gS(x, ρ, λ)

while S(0, 0, 0), (dX)0,0,0, and (d%)0,0,0 are scalar multiples of the identity matrix.
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Denote Ex,ρ,λ for the local ring of all G -invariant smooth germs in (x, ρ, λ)-variables. Further, the

unique maximal ideal M in Ex,ρ,λ is generated by M :=< x, ρ, λ >. Define
−→
M as a Ex,ρ,λ-module

generated by

−→
Mk :=

〈(
xk−i−jρjλi

0

)
,

(
0

xk−i−jρjλi

)∣∣∣ 0 ≤ i, j, and i+ j ≤ k

〉
⊂
−→
E x,ρ,λ(G ). (0.2)

Here,
−→
E x,ρ,λ(G ) stands for the smooth G -equivariant germ vector fields. The ideal

−→
M includes all G -

equivariant flat vector fields and
−→
Mk (for k ∈ N) constitutes a decreasing chain sequence of Ex,ρ,λ-modules,

i.e.,
−→
Mk+1 (

−→
Mk.

Theorem 0.1 (Cases (s = 1, r > 1)). Let b1 6= 0. Then, the map G(x, ρ, λ) =
(
λ+ 2ρ2 + b1x

2, b1
2
xρ
)

is strongly G -equivalent to G + p for any p ∈
−→
M3. In other words,

−→
M3 ⊆ P(G,G ). In particular, the

steady-state solutions are two determined.

Proof. Recall that Ex,ρ,λ-module Ks(G ) is generated by M
(
G1

0

)
,M

(
0
G1

)
,M

(
G2

0

)
,M

(
0
G2

)
,M2

(
G1x

G2x

)
, and

M2
(
G1ρ

G2ρ

)
. We claim that

−→
M

3
⊆ Ks(G ). Thereby for any p ∈

−→
M

3
⊆ Ks(G ), G+ p is strongly G -equivalent

with G. The latter claim follows from [2, Theorem 7.2, page 205]. Indeed, the higher order term module

P(G,G ) includes the intrinsic G -equivariant Ex,y,λ-submodule of Ks(G ). For any G -equivariant Ex,ρ,λ-

module
−→
I , the inclusion

−→
I ⊆ Ks(G ) is equivalent with the inclusion

−→
I ⊆ Ks(G )+M

−→
I . This is the basis

of our arguments in the proof for here and also for that of Theorem 0.3. We introduce an equivalence

relation ' on
−→
E x,ρ,λ(G ) defined by

for every A,B ∈
−→
E x,ρ,λ(G ), A ' B if and only if A−B ∈M

−→
I . (0.3)

Hence, we let
−→
I :=

−→
M3 and b1 := 2 without loss of generality. Thus, M

−→
I =

−→
M4. Further, let G be

the identity group; the proof for G :=
〈
Γ
〉

readily requires some minor modifications. Therefore, Ks(G )

includes vector field germs generated by

ρ

(
G2

0

)
=

(
xρ2

0

)
, x

(
G2

0

)
=

(
ρx2

0

)
, λ

(
G2

0

)
=

(
xρλ

0

)
,

ρ

(
0
G2

)
=

(
0
xρ2

)
, x

(
0
G2

)
=

(
0,
ρx2

)
, and λ

(
0
G2

)
=

(
0
xρλ

)
.

Furthermore, we have x2
(
G1

0

)
'
(
λx2

0

)
, xλ

(
G1

0

)
'
(
xλ2

0

)
, x2

(
G1x

G2x

)
− x

(
0
G2

)
=

(
4x3

0

)
, and

ρ2
(
G1x

G2x

)
− 4ρ

(
G2

0

)
=

(
0
ρ3

)
, while

ρ2
(
G1ρ

G2ρ

)
− ρ

(
0
G2

)
=

(
4ρ3

0

)
, ρ2
(
G1

0

)
'
(
λρ2

0

)
, ρλ

(
G1

0

)
'
(
ρλ2

0

)
, and λ2

(
G1

0

)
'
(
λ3

0

)
.

Therefore, all these terms belong to Ks(G ) +M
−→
I . Now we consider

ρ2
(

0
G1

)
'
(

0
ρ2λ

)
, ρλ

(
0
G1

)
'
(

0
ρλ2

)
, λ2

(
G1ρ

G2ρ

)
− 4ρλ

(
G1

0

)
=

(
0

4xλ2

)
,
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and x2
(
G1ρ

G2ρ

)
− 4x

(
G2

0

)
=

(
0
x3

)
. These also conclude that

(
0
ρ2λ

)
,

(
0
ρλ2

)
,

(
0
xλ2

)
, and

(
0
x3

)
belong to Ks(G )+M

−→
I . Next, recall that

(
xρλ

0

)
∈ Ks(G ) and on the other hand, we have λx

(
G1ρ

G2ρ

)
=(

4λxρ
1
2
λx2

)
∈ Ks(G ). These imply that

(
0
λx2

)
∈ Ks(G ). Further, λ2

(
0
G1

)
'
(

0
λ3

)
∈ Ks(G ) +M

−→
I .

Therefore, we have proved that all generators of
−→
I are included in Ks(G ) +M

−→
I . This completes the

proof by Nakayama lemma.

Proposition 0.2 (Normal form first integrals for cases s < r). Consider a s+ 1-degree truncation of the

planar differential system (0.1) coupled with θ̇ = 1 +
∑s

i=1(ci +ωi)x
i and let µi = 0 for all 2 ≤ i ≤ 2s+ 1.

This system admits a family of normal form first integrals given by

Is(x, ρ, µ1) := 1
2(s+1)

ρ−2−2s
(

2(s+1)
s

ρ2 + µ1 + bsx
s+1
)
. (0.4)

Proof. We have

ẋ = µ1 + 2ρ2 + bsx
s+1, ρ̇ = 1

2
bsx

sρ, θ̇ = 1 +
∑s

i=1(γi + ωi)x
i.

Thereby, we have

Mdx+Ndρ := 1
2
bsx

sρdx− (µ1 + 2ρ2 + bsx
s+1) dρ = 0. (0.5)

Next, we employ an integrating factor derived by

µ = exp
(∫
−2
ρ

(
s+ 3

2

)
dρ
)

= ρ−3−2s, where
Mρ −Nx

−M
= −2

ρ

(
s+ 3

2

)
.

This leads to

1

2
bsx

sρ−2−2sdx−
(
µ1 + 2ρ2 + bsx

s+1
)
ρ−3−2sdρ = 0.

Solving this first order equation gives rise to the first integral given by Is(x, ρ, µ1) in equation (0.4).

Theorem 0.3 (Case r = s = 1). Let G(x, ρ, λ) = (G1, G2) :=

(
λ+ a1x

2 + 2ρ2 + b1x
2,−a1xρ+

1

2
b1xρ

)
for a1 6= −b1 and 2a1 6= b1. Then,

−→
M3 ⊆P(G,G ). Besides, G is strongly G -equivalent to G+ p for any

p ∈
−→
M3. Assume that F is a smooth function and its two jet is the same as G. Then, the steady-state

analysis of any system associated with F is two determined.

Proof. Recall that Ks(G ) ⊆ P(G,G ). Thus, it suffices to show that
−→
M3 ⊆ Ks(G ). Let

−→
I =

−→
M3 and

apply the equivalence relation ', that is defined on
−→
E x,ρ,λ(G ) by equation (0.3). Hence, A ' B if and

only if A−B ∈
−→
M4. Then,

λ2
(
G1

0

)
'
(
λ3

0

)
∈ Ks(G ) +M

−→
I , x2

(
G1

0

)
'
(
λx2

0

)
∈ Ks(G ) +M

−→
I ,

and ρ2
(
G1

0

)
'
(
λρ2

0

)
∈ Ks(G ) +M

−→
I while due to b1 − 2a1 6= 0,

2x

b1 − 2a1

(
0

G2

)
=

(
0

x2ρ

)
∈ Ks(G ),

2ρ

b1 − 2a1

(
0

G2

)
=

(
0

xρ2

)
∈ Ks(G ),
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and λ

(
0
G2

)
=

(
0(

1
2
b1 − a1

)
λxρ

)
∈ Ks(G ). Since x2

(
G1x

G2x

)
−x
(

0
G2

)
= 2(a1+b1)

(
x3

0

)
and a1+b1 6= 0,(

x3

0

)
∈ Ks(G ). Moreover, we have ρ2

(
G1ρ

G2ρ

)
−ρ
(

0
G2

)
=

(
4ρ3

0

)
∈ Ks(G ), and xρ

(
G1ρ

G2ρ

)
−x

(
0
G2

)
=(

4xρ2

0

)
∈ Ks(G ). The later deduces that

(
0

b1−2a1
2

ρ3

)
= ρ2

(
G1x

G2x

)
− 2(a1 + b1)

(
xρ2

0

)
∈ Ks(G ). On the

other hand,

xλ

(
G1

0

)
'
(
xλ2

0

)
∈ Ks(G ) +

−→
M4, λρ

(
G1

0

)
'
(
λ2ρ

0

)
∈ Ks(G ) +

−→
M4,

and xρ
(
G1

0

)
'
(
λxρ
0

)
∈ Ks(G )+

−→
M4.However, for the cases of

(
x2ρ
0

)
and

(
0
x3

)
, we have x

2(a1+b1)
ρ

(
G1x

G2x

)
−

ρ
2(a1+b1)

(
0
G2

)
=

(
x2ρ
0

)
∈ Ks(G ) and 2x2

b1−2a1

(
G1ρ

G2ρ

)
− 2

b1−2a1

(
4x2ρ

0

)
=

(
0
x3

)
∈ Ks(G ). Further, we

have

λx

(
G1ρ

G2ρ

)
− 4λρ

(
G1

0

)
' b1 − 2a1

2

(
0
x2λ

)
, λ2

(
G1ρ

G2ρ

)
− 4xρ

(
G1

0

)
' b1 − 2a1

2

(
0
xλ2

)
and λρ

(
G1x

G2x

)
−2(a1 +b1)xρ

(
G1

0

)
' b1−2a1

2

(
0
λρ2

)
. Thereby,

(
0
xλ2

)
,

(
0
x2λ

)
, and

(
0
λρ2

)
∈ Ks(G )+

−→
M4. Now the remaining vector field generators for

−→
M3 are

(
0
λ3

)
and

(
0
ρλ2

)
. Since

(
0
xλ2

)
∈ Ks and

λ2
(
G1x

G2x

)
=

(
λ2x
λ2ρ

)
∈ Ks, these express that

(
0
ρλ2

)
∈ Ks. Then, λ2

(
0
G1

)
'
(

0
λ3

)
∈ Ks(G ). These

conclude that all vector field generators of
−→
M3 are included in Ks(G ) +M

−→
I . Finally, by the Nakayama

lemma, we have
−→
I ⊆ Ks(G ) and this completes the proof.

Theorem 0.4. Let G :=
〈
Γ
〉
. Then, the equivariant tangent space for bifurcation problem

F : (f1, f2) =

(
λ+ a1x

2 + 2ρ2 + b1x
2,−a1xρ+

1

2
b1xρ

)
(0.6)

is given by T (F,G ) =
−→
M2(G ) + R

(2(a1+b1)x
(
b1
2
−a1)ρ

)
+ Eλ

(
1
0

)
for a1 6= −b1 and b1 6= 2a1. Thus, the universal

unfolding for (f1, f2) with respect to strong equivalence relation is given by (G1, G2) = (f1 + ηx, f2 − ηρ
2

).

Proof. Consider F = (p, qρ) := [p, q] where v := ρ2 and u := x. Then, RT (F,Z2) is generated by [2, Table

3.1, Page 177] as follows

span {[p, 0], [vq, 0], [0, p], [0, q], [upu, uqu], [vpu, vqu], [λpu, λqu], [vpv, vqv]} . (0.7)

We apply Nakayama Lemma to prove that
−→
M2(G ) ⊆ RT (F,Z2). Hence, we need to show that

−→
M2(G ) ⊆

RT (F,Z2) +
−→
M3(G ). We have

1

2(a1 + b1)
[upu, uqu − q] =

(
x2

0

)
,

1

2
[vpv, vqv] =

(
ρ2

0

)
, λ[p, 0] =

(
λ2 + (a1 + b1)λx

2 + 2λρ2

0

)
,

and these lead to the conclusion that(
x2

0

)
,

(
ρ2

0

)
,

(
λ2

0

)
∈ RT (F,Z2) +

−→
M3(G ).
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Further, we have 2
b1−2a1

[0, q] =
(
0
xρ

)
∈ RT (F,Z2) and[

2

b1 − 2a1
vpu,

2

b1 − 2a1
vqu −

8(a1 + b1)

(b1 − 2a1)2
p

]
=

(
0

ρ3

)
∈ RT (F,Z2).

Since x[p, 0] ∈ RT (F,Z2),
(
λx
0

)
∈ RT (F,Z2) +

−→
M3(G ). Hence, the equality

[λpu, λqu] =

(
2(a1 + b1)xλ

(1
2
b1 − a1)λρ

)
∈ RT (F,Z2) (0.8)

implies that
(

0
λρ

)
∈ RT (F,Z2) +

−→
M3(G ). On the other hand,

−→
M2(G ) is generated by〈(

x2

0

)
,

(
ρ2

0

)
,

(
λ2

0

)
,

(
xλ

0

)
,

(
0

xρ

)
,

(
0

ρ3

)
,

(
0

λρ

)〉
.

Hence,
−→
M2(G ) ⊂ RT (F,G ). This and [p, 0] =

(
λ+a1x2+2ρ2+b1x2

0

)
∈ RT (F,G ) imply that

RT (F,G ) =
−→
M2(G ) + Ex,λ

(
λ

0

)
.

By [2, Page 212 and 213], the corresponding equivariant tangent space follows

T (F,G ) = RT (F,G ) + R{[pu, qu]}+ Eλ{[pλ, qλ]}.

Here, [pu, qu] = [2(a1 + b1)x,
b1
2
− a1] =

(2(a1+b1)x
( b12 −a1)ρ

)
and [pλ, qλ] = [1, 0] =

(
1
0

)
. Thus,

T (F,G ) = RT (F,G ) + Eλ

(
1

0

)
+ R

(
2(a1 + b1)x

( b1
2
− a1)ρ

)
=
−→
M2(G ) + Eλ

(
1

0

)
+ R

(
2(a1 + b1)x

( b1
2
− a1)ρ

)
. (0.9)

Since b1 6= 0, we have T (F,G )⊕ R
(

x
− 1

2
ρ

)
=
−→
E (G ). This completes the proof.

Proposition 0.5 (Normal form first integrals for cases r = s). Consider the r + 1-truncation of the

normal form differential system given by

ẋ = 2ρ2 + arx
r+1 + brx

r+1 +
2r∑

k=r+1

akx
k+1 +

r∑
i=1

µix
i−1 +

r−1∑
i=0

µi+r+1x
i+1, (0.10)

ρ̇ =
1

2
brx

rρ− ar(r + 1)

2
xrρ−

2r∑
k=r+1

ak(k + 1)

2
xkρ−

r∑
i=1

(i− 1)

2
µix

i−2ρ+
1

2

r−1∑
i=0

µr+1+ix
iρ,

where the parameters µi = 0 for i 6= 1. Then, this system admits a one-parametric family of normal form

first integrals given by

Ir(x, ρ) := arr+ar−br
2arr+brr+2ar

ρ
2(2arr+brr+2ar)

arr+ar−br − arr+ar−br
2(r+1)(ar+br)

µ1ρ
2(r+1)(ar+br)
arr+ar−br − arr+ar−br

2(r+1)
xr+1ρ

2(r+1)(ar+br)
arr+ar−br . (0.11)

Proof. The proof is similar to the proof of Proposition 0.2 and is omitted for briefness.
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