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Abstract

This is a supplementary file that presents the proofs for [6, theorems 2.5, 2.9, and 2.10].

An efficient nonlinear time transformation method has been recently developed and applied for global bi-
furcation varieties of homoclinic and heteroclinic varieties of codimension two singularities [1, 2, 7]. This is an
efficient alternative approach to the classical use of Melnikov functions; e.g., see [9, 10]. Both approaches have
been usually applied using one-small scaling variable. Since all parameters are scaled using one parameter, the
approach typically lead to a one-dimensional transition variety and fits well within a codimension-two singularity.
Transition varieties must have a dimension of three in order that they would partition the parameter space in four
dimensions. Although the scaling constants play a role in accommodating the higher dimensional transitions sets
(e.g., see [8]), we include three scaling parameters ε1, ε2, ε3. We derive an estimation for controller sets for homo-
clinic and heteroclinic bifurcations. Our symbolic estimations are accurate enough for many control engineering
applications. Higher order approximations than our derived formulas are also feasible, but it is beyond the scope
of this paper; e.g., see [1, 2, 7, 8] for highly accurate one- and two-dimensional transition varieties. Symbolic
estimations for these bifurcations are useful for an efficient management of the nearby oscillating dynamics.

Theorem 0.1. [6, Theorem 2.5] When a2 > 0 and µ0 = O(|µ1|2), the bifurcated limit cycles disappear via two
distinct quaternary homoclinic controller sets estimated by
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The leading estimated terms for the homoclinic cycles Γ± give rise to an effective criteria for the magnitude
control of the nearby oscillating dynamics. These are given by
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2 ),O(|µ1|)), forϕ ∈ [0, π].

Proof. We apply a nonlinear time transformation method and include multiple scaling parameters εi for i = 1, 2, 3;
see [2, 7, 8]. Namely, we use the rescaling transformations

x = ε1
2x̃, y = ε1ỹ, t = ε1

−1t̃, µ0 = ε1
3 (γ1 + γ01ε1 + γ02ε2) , µ1 = ε1

2 (γ2 + ε1γ11 + ε2γ12 + ε3γ13) ,

µ2 = ε1
2γ21 + ε1ε2γ22 + ε1ε3γ23 + ε1O(|(ε1, ε2, ε3)|2), µ3 = ε1γ31 + ε2γ32 + ε3γ33 + ε1ε2γ34. (0.2)

These transform the differential system given in [6, equations (1.3)] into

˙̃x = γ1 (γ2ε1 + γ02ε2) + γ2 (1 + ε1γ11 + ε2γ12 + ε3γ13) ỹ + (ε1γ21 + ε2γ22 + ε3γ23) x̃+ a2ỹ
3

+ (ε1γ31 + ε2γ32 + ε3γ33 + ε1ε2γ34) x̃ỹ + ε1b2x̃ỹ
2, (0.3)

˙̃y = −x̃+ (ε1γ21 + ε2γ22 + ε3γ23) ỹ + (ε1γ31 + ε2γ32 + ε3γ33 + ε1ε2γ34) ỹ
2 + ε1b2ỹ

3.

The unperturbed system, i.e., when ε = (ε1, ε2, ε3) = 0, is a Hamiltonian system with Hamiltonian H =
γ1ỹ+ 1

2 x̃
2+ 1

2γ2ỹ
2+ 1

4a2ỹ
4. We further Taylor-expand the new state variables and a time-rescaling transformation

in terms of the scaling parameters εi for i = 1, 2, 3 as

x̃(ϕ) := x̃0(ϕ) +
∑
εj
ix̃ij(ϕ), ỹ(ϕ) := ỹ0(ϕ) +

∑
εj
i (pij cos(2ϕ) + qij) ,

t̃ = Φτ, Φ := φ0 +
∑
εj
iφij , (0.4)
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where the sum
∑

without indices stands for the double sum
∑∞

i=1

∑3
j=1 and ϕ ∈ [0, π]. Let γ1 := 0, γ01 := 0,

γ02 := 0, γ2 := −1, γ34 := 1. Then, Hamiltonian of the unperturbed system holds a homoclinic cycle that
connects the stable and unstable manifolds of the origin, i.e., the homoclinic orbit follows H(x̃, ỹ) = 0. When
the rescaling variables εi for i = 1, 2, 3 becomes non-zero, the homoclinic cycle still holds for a homoclinic variety
of codimension-one in the parameter space. The idea of the nonlinear time transformation method is to iteratively
calculate the homoclinic cycle and homoclinic variety in terms of powers of εi. We here only deal with zero and
first order approximations, i.e., (p0, q0, x0, φ0) and (p1j , q1j , x1j , φ1,j) for j = 1, 2, 3. We remark that there is only
a homoclinic cycle for system (0.3). However, this will turn out to be two homoclinic cycles Γ± for [6, equations
(1.3)], depending on the sign of ε1 in (0.9). The zero order approximation is given by (x̃0(ϕ), ỹ0(ϕ)), where we
assume that

ỹ0 := p0 cos(2ϕ) + q0 and x̃0(0) = x̃0(
π
2 ) = 0. (0.5)

Hence, (ỹ0(0), ỹ0(
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2 )) = (p0 + q0, q0 − p0). Since Hamiltonian is constant over the homoclinic cycle, we have
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equilibrium for the unperturbed Hamiltonian system. These equations give rise to
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, ỹ0 =

√
2

2
√
a2

cos(2ϕ)−
√
2

2
√
a2
,

x̃0 = ± sin2(ϕ) cos(ϕ)
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ỹ′0
.

Let q1j := 0 for j = 1, 2, 3. Then, ỹ11 = p11 cos(2ϕ), ỹ12 = p12 cos(2ϕ), ỹ13 = p13 cos(2ϕ) and the first-order
approximation follows

x̃ = x̃0 + ε1x̃11 + ε2x̃12 + ε3x̃13, ỹ = ỹ0 + ε1p11 cos(2ϕ) + ε2p12 cos(2ϕ) + ε3p13 cos(2ϕ). (0.6)

Next, the terms of the first-order in terms of εi for i = 1, 2, 3 in φẋ give rise to

φ0x
′
11 + p11 cos (2ϕ)− x0γ21 − x0y0γ31 − y0γ11 − γ01 − 3a2y0

2p11 cos (2ϕ) + φ11x
′
0 − b2x0y02 = 0,

φ0x
′
1i + p1i cos (2ϕ)− x0γ3(i+1) − x0y0γ4(i+1) − y0γ2(i+1)

−γ1(i+1) − 3a2y0
2p1i cos (2ϕ) + φ1ix

′
0 = 0, (0.7)

see also [7, Equation 2.22a and 2.22b]. Now consider the first-order εi-terms in φẏ along with equations (0.7).
By eliminating φ1j-terms from these equations, an integrating factor and an integration, similar to the proof
of [7, Equation 2.30], we derive∫ ϕ

0 y′0
(
y0γ11 − p12 cos (2ϕ) + x0γ21 + y0x0γ31 + b2x0y0

2 + γ01 + 3a2y0
2p12 cos (2ϕ)

)
dϕ

+x0x11 + y11g(y0) +
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(
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3
)
dϕ = 0, (0.8)∫ ϕ

0 y′0
(
y0γ2(i+1) − p1i cos (2ϕ) + x0γ3(i+1) + y0x0γ4(i+1) + γ1(i+1) + 3a2y0

2p1i cos(2ϕ)
)
dϕ

+x0x1i + y1ig(y0) +
∫ ϕ
0 x′0

(
y0

2γ4(i+1) + γ3(i+1)y0
)
dϕ = 0, for i = 2, 3.

Evaluating equation (0.7) at ϕ = π and (0.8) at ϕ = π, π/2, we obtain nine number of linear equations. These
give rise to the scaling parameters

γ21 = − 8b2
5a2

+ 9
√
2π

32 γ31, γ22 = 9
√
2π

32 γ32, γ23 = 9
√
2π

32 γ33, (0.9)

γ11 = 0, γ12 = 0, γ13 = 0, ε1 := ±
√
−µ1.

Finally, we substitute these into the equation for µ2 in (0.2) and derive transition sets THmC± given in equation
(0.1).

Theorem 0.2. [6, Theorem 2.9] Let |µ0| = O(|µ1|2). For the case a2 < 0, there is a heteroclinic cycle Λ.
This connects the equilibrium E+ with the saddle E−. The corresponding heteroclinic bifurcation occurs at the
heteroclinic controller set approximated by

THtC :=

{
(µ0, µ1, µ2, µ3)|µ2 =
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}
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The most leading estimated terms for Λ are

(x, y) =
(
µ1
√
2
2 sin(2ϕ)

√
a2 cos2(2ϕ) + 2 + a2,

√
µ1√
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cos(2ϕ)
)

+ (O(|µ1|
3
2 ),O(|µ1|)).

Proof. Here, we use the rescaling transformations (0.2) and (0.4) when γ1 := 0, γ02 := 0, γ2 := 1, γ11 := γ12 :=
γ13 := 0, and γ34 := 1. The unperturbed heteroclinic orbit connects the two saddles

(
0,± 1√

−a2

)
. We assume that

equations (0.5) hold. Similar to [7, Equation 2.11], we have

y0(0) = − 1√
−a2

= p0 + q0, y0(
π
2 ) = 1√

−a2
= q0 − p0, and thus,

ỹ0 = p0 cos(2ϕ) + q0 = 1√
−a2

cos(2ϕ), q0 = 0.

We compute the unperturbed heteroclinic orbit via H(x̃0, ỹ0) = H(0,±(−a2)
−1
2 ) where H(x̃, ỹ) = 1
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2 ỹ
2 +

1
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4. Therefore, x̃0 =
√
2
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√
a2 cos2(2ϕ) + 2 + a2. The first-order terms for i = 1, 2, 3 in φẋ follow equa-

tions (0.7) and equations (0.8) hold. We need the first-order terms in φẏ given by (see [7, Equations 2.22a and
2.22b])

φ0y
′
11 − γ21y0 − y02γ31 − b2y03 + φ11y

′
0 = 0, φ0y

′
1i − γ3(i+1)y0 − y02γ4(i+1) + φ1iy

′
0 = 0, (0.11)

for i = 2, 3. We evaluate equations (0.7) and (0.11) at ϕ = 0, π2 , while equations (0.8) are computed at ϕ = π/2.

These lead to fifteen linear equations and γ21 = 2b2
5a2

+ 9
16γ31, γ32 = 16

9 γ22, and γ33 = 16
9 γ23. Thus, transition

varieties (0.10) are derived by substitution of these values into the rescaling transformation for µ2.

Theorem 0.3. [6, Theorem 2.10] Let a2 < 0. There are two homoclinic cycles Λ± connecting the stable and
unstable manifolds of E± at the estimated controller sets

T±HmC :=

{
(µ0, µ1, µ2, µ3)|µ1 = 10
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5
2
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5
2
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2
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}
. (0.12)

The homoclinic Λ+ occurs when µ0 > 0 while Λ− corresponds with negative values of µ0. The leading estimated
terms for (x, y)-coordinates of the homoclinic cycles Λ± are

∓0.7157063998 (cos(2ϕ)− 0.2299428741) and ∓ µ10.3622053022
√

2 sin(2ϕ)
√
cos(2ϕ) + 2.28512403471548,

for ϕ ∈ [0, π], respectively. This is useful for the management of its nearby oscillating dynamics.

Proof. We first use transformations x = (−a2)
3
2 x̂, y = (−a2)

1
2 y, and time rescaling t = − 1

a2
τ to change the

coefficient a2 to −1. Then, we have

˙̂x = (−a2)
−5
2 µ0 + (−a2)−2 µ1ŷ + (−a2)−1 µ2x̂− ŷ3 + (−a2)

−1
2 µ3x̂ŷ + b2x̂ŷ

2, (0.13)

˙̂y = −x̂+ (−a2)−1 µ2ŷ + (−a2)
−1
2 µ3ŷ

2 + b2ŷ
3.

Let µ∗0 := (−a2)
−5
2 µ0, µ

∗
1 := (−a2)−2 µ1, µ∗2 := (−a2)−1 µ2, µ∗3 := (−a2)

−1
2 µ3. Next, we replace µ∗i with µi and ŷ

with ỹ for simplicity. Now apply the rescaling transformations (0.2) and expansion (0.4) when

γ1 = ±0.1, γ01 = γ02 = 0, γ2 = −1, γ11 = γ13 = 0, γ12 = 1, γ21 = γ22 = 0, γ34 = 0. (0.14)

Recall that the unperturbed system is Hamiltonian and it holds a homoclinic cycle Λ+ for γ1 > 0. This connect the
stable and unstable manifolds of the saddle E+. The homoclinic cycle Λ− happens for γ1 < 0 and corresponds
with E−. Following the proof of Theorem 0.1, we apply equations (0.5), (ỹ0(0), ỹ0(

π
2 )) = (p0 + q0, q0 − p0),

H(x̃0(
π
2 ), ỹ0(

π
2 )) = H(0, p0 + q0), and ∂H

∂ỹ (0, p0 + q0) = 0 to obtain

ỹ0 = ∓0.7157063998 cos(2ϕ)∓ 0.2299428741, p0 = ∓0.7157063998, q0 = ∓0.2299428741.

where x̃0 is obtained from H(x̃0, ỹ0) = 1
2 x̃0

2 − 1
2 ỹ0

2 + 1
4a2ỹ0

4 ± 1
10 ỹ0 = H(0, p0 + q0). Here, equations (0.7) and

(0.8) hold and we evaluate them at ϕ = π and ϕ = π, π/2, respectively. We obtain γ23 = ±0.2464356892γ33 and
γ31 := ±1.129378222b2. A substitution into the rescaling transformations completes the proof.

3



References

[1] A. Algaba, K.W. Chung, B.W. Qin, A.J. Rodriguez-Luis, Computation of all the coefficients for the global
connections in the Z2-symmetric Takens-Bogdanov normal forms, Commun. Nonlinear Sci. Numer. Simulat.
81 (2020) 105012.

[2] A. Algaba, K.W. Chung, B.W. Qin, A.J. Rodriguez-Luis, A nonlinear time transformation method to com-
pute all the coefficients for the homoclinic bifurcation in the quadratic Takens–Bogdanov normal form, Non-
linear Dyn. 97 (2019) 979–990.

[3] A. Algaba, M. Merino, A.J. Rodriguez-Luis, Homoclinic interactions near a triple-zero degeneracy in Chua’s
equation, Int. J. Bifur. Chaos 22 (2012), no. 6, 1250129, 16 pp.

[4] A. Algaba, M. Merino, F. Fernandez-Sánchez, A.J. Rodriguez-Luis, Hopf bifurcations and their degeneracies
in Chua’s equation, Int. J. Bifur. Chaos 21 (2011), no. 9, 2749–2763.

[5] A. Algaba, F. Fernández-Sánchez, M. Merino, A.J. Rodriguez-Luis, Analysis of the T-point-Hopf bifurcation
with Z2-symmetry. Application to Chua’s equation, Int. J. Bifur. Chaos 20 (2010) 979–993.

[6] M. Gazor, N. Sadri, Symmetry-breaking controller design for Bogdanov-Takens bifurcations with an applica-
tion to Chua system, submitted for possible publication.

[7] B.W. Qin, K.W. Chung, A. Algaba, A.J. Rodriguez-Luis, High-order approximation of heteroclinic bifur-
cations in truncated 2D-normal forms for the generic cases of Hopf-zero and nonresonant double Hopf
singularities, SIAM J. Applied Dynamical Systems 20 (2021) 403–437.

[8] B.W. Qin, K.W. Chung, A. Algaba, A.J. Rodriguez-Luis, High-order analysis of global bifurcations in
a codimension-three Takens-Bogdanov singularity in reversible systems, Int. J. Bifur. Chaos 30 (2020)
2050017, 18 pp.

[9] A.J. Homburg, B. Sandstede, Homoclinic and heteroclinic bifurcations in vector fields, in Handbook of
Dynamical Systems, H. W. Broer, B. Hasselblatt, and F. Takens, eds., vol. 3, Elsevier Science, 2010, 379–
524.

[10] L.M. Perko, Differential Equations and Dynamical Systems, Springer, New York, 3rd edition, 2000.

4


