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Abstract

We introduce an sly-invariant family of polynomial vector fields with an irreducible nilpotent singularity.
In this paper, we are concerned with characterization and normal form classification of these vector fields.
We show that the family is a Lie subalgebra and each vector field from this family is volume-preserving,
completely integrable, and rotational. All such vector fields share a common quadratic invariant. We provide
a Poisson structure for the Lie subalgebra from which the second invariant for each vector field can be
readily derived. We show that each vector field from this family can be uniquely characterized by two
alternative representations which can be found in applications: one uses a vector potential while the other
uses two functionally independent Clebsch potentials. Our normal form results are designed to preserve
these structures and representations.
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1. Introduction

We are concerned with the nonlinear normal form classification of an sl,-Lie algebra gener-
3

ated family of vector fields with a nilpotent linear part, i.e., —N := —x % — 2y ;. The Jacobson—
Morozov theorem [21, Chapter X, Section 2] provides the other two generators that form an
sly-triple along with N. Consider N as a differential operator. Then by the adjoint action of the
slp-Lie algebra on (nonlinear) vector fields, we introduce an sl;-invariant family of vector fields.
We show that the set of all such nonlinear vector fields whose linear part is a multiple scalar of
N constitutes a Lie algebra, where we denote it by Z. Recall that in the two-dimensional case
this family consisted of the Hamiltonian systems [2]. This paper is part of a major project, that
is to obtain the normal form classification of the general three dimensional irreducible nilpotent
singularities.

An important goal in our normal form results is to detect, compute and preserve possible sym-
metries and geometrical features of a vector field’s flow. Hence, several geometric properties for
the Z-family are carefully studied in this paper. The analysis of such vector fields must respect
these geometrical features which have applications in different applied disciplines. However, the
classical normal form computations typically destroy certain symmetries of the truncated normal
form system. These may include the system’s properties such as volume-preserving, Clebsch
potentials, vector potentials, etc. Thus in either of these cases, the dynamics analysis of the trun-
cated normal form is not appropriate. Hence it is important to use permissible transformations
which preserve the system’s symmetry; also see [16,18]. An automatic consequence here of the
Lie algebraic approach is that our (truncated) normal form results preserve all the different rep-
resentations (described below) in the paper such as vector potential, Clebsch potentials, and the
volume-preserving property.

Solenoidal (volume-preserving) vector fields appear in disciplines such as magnetic fields
and fluid mechanics; e.g., see [5,20,23-25]. Computing the invariants of vector fields in the
HB-family is an important goal in this paper. Any solenoidal vector field, say v, takes a vector
potential representation, that is, there exists a vector field, say w, whose curl is v, i.e., Vxw =
v. We prove that all vector fields in # are solenoidal and provide the method and formulas
for deriving their vector potential normal forms. We further introduce a Poisson algebra that is
Lie-isomorphic to 4 through a Lie isomorphism 1. In immediate important consequence is that
the Lie isomorphism i associates a first integral ¥ (v) to each vector field v from ZA. We further
show that the quadratic polynomial A := xz — y? is a second first integral for all vector fields
in A.

Analytic normalization of an analytic vector field has close relations with complete integra-
bility of the vector field; e.g., see [37,38,45,49]. We recall that two first integrals for v in A are
called functionally independent when their gradients have a rank of 2 for almost everywhere;
e.g., see [45, page 3553] and [37]. The level curves of these invariants provide a comprehensive
understanding about the orbits in the state space associated with the vector field’s flow. Each
vector field v from the slp-invariant Lie algebra % is a completely integrable solenoidal vector
field; i.e., we show that the invariants A and v (v) for each v € # are functionally independent.
There is another alternative representation for completely integrable solenoidal vector fields, that
is given by the two functionally independent invariants. Indeed, we prove that each vector field v
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in A equals the exterior product of the gradients of A and v (v); the latter is obtained through the
Lie isomorphism 1 between 4 and our introduced Poisson algebra. The first integrals in the ex-
terior product are referred as Clebsch potentials or Euler potentials of the vector field v; e.g., see
[23,24,27]. We refer to A by the primary Clebsch potential and ¥ (v) as the secondary Clebsch
potential for v. We further conclude that these families of triple zero singularities are rotational
vector field, that is, their curl is non-zero. This implies that these are not gradient vector fields.

Finally, we prove that 4 is the set of all multiple scalars of solenoidal vector fields such as v,
that is given by

0 ]
vVi=—x——2y— +v(x,y,2), (1.1)
ay 0z

where v : R3 — R3 denotes a vector field without constant and linear part,
div(v) =0, and v(A) =0. (1.2)

The algebraic results throughout this paper work fine for any field with zero characteristic.
However, we merely present them as for the field R, since this we work with real differential
equations. Note that at our convenience we mix freely the use of notations and terminologies
such as vector fields, differential systems, and differential operators. Note that x and A are the
two generators of the invariant algebra for the linear vector field N. We refer to the vector field
v in equations (1.1)—(1.2) as a completely integrable system since it has two functionally in-
dependent invariants A and v (v). The Poisson structure and the Lie isomorphism i provide a
practical method for deriving the second first integral within the invariant algebra of vector fields
given by (1.1)—(1.2) and their normal forms.

Normal form classification of nilpotent singularities has been (and still is!) a challenging task.
Even in the two-dimensional case, there have been numerous important contributions in various
types and approaches; e.g., see [1-3,6,7,12,15,19,22,39-42,44,46,48]. There have only been a
few contributions in three dimensional state space cases; see [13,47] where hypernormalization
is performed up to degree three; also see [17] and [30-34]. In this paper we provide a complete
normal form classification for all vector fields v in equations (1.1)—(1.2), that is, the set of all
completely integrable solenoidal nilpotent singularities where A is one of their invariants and a
multiple scalar of N is their linear part. These vector fields and their normal forms are uniquely
characterized by their secondary Clebsch potential. Indeed, the primary Clebsch potential A
is always preserved throughout the normalization steps while the normalizing transformations
naturally reflect the normal form changes into the secondary Clebsch potential. In Theorem 5.1,
we prove that a vector field given by (1.1)—(1.2) can be either linearized or uniquely transformed
into the formal normal form vector field

0,0 Y 9 ) a)
Wi=—Xx——2y— — —
dy yaz ¢ Zay yax
o [F 9 9
+ bixz (xz — yH HTP (2 — 42y —), 1.3
k;ﬂ; k2 (xz — %) G5y T 250 (1.3)

where b; ; € R and p is a natural number. In addition, the secondary Clebsch potential normal
form is given by
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I(x,y,2)=x+

o 2
b')k : k—2i+
p+1z”+1+ o> = -y T (14)

The normal form invariant (1.4) can sometimes be used for further reduction of the normal form
vector fields; e.g., see Section 5.

Now we describe the organization of the rest of this paper. We introduce a family of
sly-invariant irreducible vector spaces of vector fields in Section 2. We further prove that this
family constitutes a Lie algebra and derive the associated structure constants. Section 3 is devoted
to the introduction of a Poisson algebra and the proof that it is Lie isomorphic to . Next, we
discuss the geometrical properties of the Z-family in Section 4. In particular, we show that our
sly-invariant introduced family of vector fields are fully characterized by equations (1.1)—(1.2).
Two further representations for each such vector field are presented in this section by using their
Clebsch potentials and vector potentials. Section 5 is dedicated to study the normal form classi-
fication for vector fields (1.1)—(1.2). Some practical formulas for normal form coefficients of up
to degree three for a given triple zero singularity (1.1)—(1.2) are presented.

2. Algebraic structures

Let
a d d a
Ni=x—+2y—, M:i=z—+2y—, d
xay—i- yaz Z8y+ yax an
a d
H:=[M,N]=MN-NM=2z— —2x—. 2.1
9z ox

The triple {M, N, H} generates an sl, Lie algebra, i.e.,
[M,N]=H, [H,M] =2M, [H,N] = —2N.

We denote (N” f) v for the iterative action of N as a differential operator on the scalar function
f that is also multiplied with v. Further for a vector field v, N"(v) is inductively defined by

N@) :=adyv, and N"'(v):=adyN""'(v) forn > 1.

Note that N as an operator distinguishes vector fields from scalar functions: the operator N merely
acts on scalar functions as a differential operator while it acts as a Lie operator on vector fields. By
[8, Proposition 2], R[[z, A]] is the invariant ring for M. If for a homogeneous scalar polynomial
function f : R3 [x,y,z] > RinkerM = (A, z), there exists an integer wy € Z so that

Hf = oy f,

then s and f are called the eigenvalue and eigenfunction of the differential operator H, respec-
tively. The algebra of first integrals for M is the same as kerM = (A, z); see [9], [31, Chapter 2]
and [36, Chapter 9] for more details on the representation of sl and normal form theory. In this
section, we use the slp-triple (2.1) to generate a family of irreducible sl,-invariant vector spaces.



M. Gazor et al. / J. Differential Equations 267 (2019) 407-442 411

The set of all such invariant vector spaces constitutes a Lie algebra. This consists of all com-
pletely integrable and solenoidal vector fields of triple zero singularities, that is, their linear part
is a scalar multiple of N in (2.1). Vector fields from this family can be considered as analogues
in three dimensional state space for completely integrable Hamiltonian systems which always
require even dimensions in state space; also see [16, page 2812].

Notation 2.1.
e The following notations frequently appear in this paper.
o1:=01(51, 52, k1, k2) = 51 + 52 + k1 + ka2,
02:=02(q1,q2,11,12) = q1 + q2 — i1 — i2. (2.2)

e We denote e, e, and es for the standard basis of R3 and Kpi = (1’_—'1),

e We use the Pochhammer k-symbol notation for any a,b € R,k € N as (a)]}j = ]_[I;-;(l) (a +
jb).

e Throughout this paper we frequently use some constants or variables with negative powers in
the denominator (or numerator) of a fraction. The reader should merely treat this as a formal
misuse of notation to shorten the formulas.

Now we present some technical results which play a central role in this paper.
Lemma 2.2. Let f be a homogeneous scalar polynomial function. Then,
N"(fM) = N"(/)M —aN"" (/)H —n(n — DN""2(f)N, for any n € N. (2.3)
Proof. The proof is by induction. For n = 1, we have
N(/M) =N(f/)M+ fIN,M]=N(f/)M — fH=N(f)M — fH.
By the induction hypothesis we have

Nn+1 (fM)
= [N,N"(f)M — nN"~1(f)H — n(n — DN""2(f)N]
= N (/)M 4+ N"(f)NM — nN"(f)H — nN"~' (f)NH — n(n — HDN""1 ()N
—n(n — DN"2(f)NN — (N"(f)MN — aN"" (£ )HN — n(n — HN""2(f)NN)
= N"HL(f)M + N"(/)IN, M] — nN" (f)H — nN"~ ()[N, H] = n(n = DN""' (/)N
— N (/)M = (n + DN"(/)H — n(n + DN""1(f)N.

This proves the statement; also see [9, Proposition 1]. O

There is an important corollary to this lemma.
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Corollary 2.3. For any H-eigenfunction f € kerM, with eigenvalue @y we have

Awp —n+Dknw42N"2(f) 9 (@0f =204+ Dknw,12N"2(f) 8
(0f +2knt1,0,+2 ax (0f +2kn,0,+2 dy
2nkn,wp42N""12(f) B
(@f +Dkn gt 02

N*(fM) =

2.4
Lemma 2.4. For each | € Ny, the following equalities hold:

9 3 ) F)
—N =1(—DN2— 4 IN"T— N —
0 90z

X ay ox’
) 9 )

— N =N = ¢ N

ay 9z ad

9 ;9

—N =N —.

0z 9z

Proof. The proof is by induction on /. For instance, by the induction hypothesis we have

9 9 ) 9 9
— N =N N+ N —N= 21N’ 2Nl NIN— =2( +1 N’ NI+ —
% " + % " + " + % I+ + 5

This proves the second equality. O
Lemma 2.5. Let ¢ =2s +r, wherer =0 orr =1 and s € Ny. Then,
N .
N¢ (Zi) — Z nz,lxs—nyrzi—s—r—n An’
n=0

Nq(z)_zé-ql s—n 2n+r i—n—s— r (2.5)

where

g CDO D5 — 12 2.6)
i nl2i— ", ’ |

q,i . __ i!(2s_|_,-)!22n+r
n

T s—=m)!Cn+Mi—n—s—r)

fori>s+n+r, while nZ’i = C,(,{’i =0fori <q+n-—s.
Proof. The proof is straightforward by an inductionon g. O

Lemma 2.5 enables us to write N¥! (z/)N92(z/) in terms of x, y, z, and A.
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Proposition 2.6. Let g1 = 251 +r1 and gy = 252 + 1o, where r1,rp € {0, 1} and s1, s5 € No. Then,

min{s|+s3—02,51+52}

N9 (7 )N (7)) = Z nlequ xS1+s2— nyr1+rgzt+/ (s1+s2+r14r24n) A" (2.7)
n=0
and
min{s|+s3—02,51+52}
N (Zl)qu (Z‘/) — Z Cr?ll (jZ.XSH_SZ ny2n+r1+r2 i+j— (sl+s2+r1+r2+n)
n=0
hold where

q1 9@ ._ Zngl q2,]
nz]' n—r>
~q1,92 q1.iq2,]
i = Zn e

Further, N9 (z)N92 (z/) = 0 when either s; < q1 —i or sy < qz — J.
Proof. This follows from Lemma 2.5. O
The following theorem provides an alternative formula for the expansion of N9 (z/)N42(z/).

Theorem 2.7. Let g1 = 2s1 + 11, g2 = 252 + 12. Then,

S|+S2+L%J

N9 (7 )N92 (7/) = Z CZIlQZN2P+|r2 ril (g2p—o2tIr—rily Asits2— pHLAF2 . (2.8)
p=max{oz,0}
where
Y1+S2+L¥J—P q1.92 ritry | 24192 1 sits2—p— ""Lrlﬂzl
qu q2 Z (nrlj =5 2 J’7r 11])( + )1
piij T 2 2p— _ rtry
=0 nOP‘HI’Z ril,.2p (TZ(Sl +S2—p—}’)!2p+r (s1+s2+1 5 )

+ 152
(p—oa+1—lryr ) 2P

(2.9)

r]+)2J

(4p — 209 +3 — 4Lr1+r2J)s1+sz p—r+l
Proof. See Appendix A. O

Lemma 2.8. The ring of polynomials invariants of M is the polynomial ring R[z, A].
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Proof. The proof is done in [36], but with a nonstandard choice of nilpotent. Obviously, R[z, A]
is an invariant ring for M. We prove that this is actually the ring of invariants for M using gen-
erating functions; see [8—11,31,36]. Following the algorithm and notations used on [8] where d
stands for the “degree” and w for the “weight”, the generating function for the invariant ring
R[z, A] is given by

1

Td.w =a—rod_a)

(2.10)

The invariant z has an eigenvalue (weight) 2 with respect to H and degree 1. For the invariant A,
the eigenvalue is 0 and its degree is 2. Hence, the term (1 — w2d) in the denominator of T (d, w)
appears for the invariant z while (1 — d?) shows up for A. Differentiating wT (d, w) with respect
to w at w =1 leads to

9 (1 —w?d)(1 —d?) +2w?d(1 —d?)
g Thw=1= (1 — w2d)2(1 — d2)? vl
(1 —d)(1 —d*) +2d(1 —d?) 1
= A —d)2(1 —d2)> (-

The latter is the generating function for all formal power series associated with three variables.
This shows that R[z, A] equals the kernel of M. O

Theorem 2.9. Let
; 9 ) .
V = span{N" (' Aka—), N"(z' AKM), N" (2! AKE) |n, i, k € Ny},
X
and

. 9 . )
K = span{z’ Aka, 7 A*M, 2/ AYE i, k € Ny},

where Ng denotes nonnegative integers and

E 0 n d N d
=x— — 47—
ox yay Zaz

Then, KC =kerady and V is the set of all three dimensional formal vector fields.

Proof. In [36] it is shown how to construct the description (or Stanley decomposition) of the
vector fields in keradM from the invariants of M (this is what Jim Murdock called boosting,
[29]). It turns out that every vector field in keradM can be written as

0
Fi(z, A]E + F2(z, AIM + F3(z, AJE.

. s (wPw?d+d)
The generating function is O—w2dy(1—dD)

Cushman—Sanders test (cf. [8]), that is

and we leave it to the reader to check that it obeys the
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9 (w? + w?d +d) 3
—w = — .
ow (1 —w2d)(1—d?) w=l (1 —d)3
This proves the Theorem. O
We define
/ 1 I4+1 i Ak . .
By = KiN (' A"™M), forr —1<1<2i+4+1,i,keNyp=NU{0}. (2.11)
’ 14+1,2i 42
By taking f := z' A¥ in Equation (2.4), wy =2i and
g _ Qi+ DNT2EFHAY 5 G —DNFIEHHAL §
T G Draaiga 0x G+ DRigraiga 9y
1 1 Nl i+1 Ak 9
(+ Digoiva 0z
Hence, B0 o:=—Nand BO(I) := —M. Now we introduce A as the vector space spanned by all

nonlinear vector fields from this family with the nilpotent linear part B0 o -e.,

% =span [Bl o+ bl (Bl | —1<I<2i+ LieNkeNobl, eR}. @13

Note that two more families of vector fields associated with Theorem 2.9 are defined in equations
(4.20) and (4.21).

Theorem 2.10. Denote o1(s1, 52, k1, k2) and 02(q1, 42, i1, i2) for the indices defined in Equations
(2.2). The vector space A is a Lie algebra with structure constants given by

51+32+Lr1+r2J
2j+lra—r1l
B B 71— Z pi:12 g 2.14
[ ik 'z’kz] Ji270 gy —ri o1 —j+ | 232 | ( )
j=max{op—1,—1}

where

ae _ Qjt1—02+ra—rik2jtir—ri|4j—200+2+2/r—r1]

fant Q) +Ir2=ril+1)
’;
% Z lqz g1 qz+3fp,qr3+p _ Cq1+37p,qu3+p)
P,3,02,i1 ]12+1,i1 p,3,i1,i2 ~ j,i1+1,ip ’
p=I1

for2j+ 14 |rp —r1| #0, while for j = —1, g1 =2s1 + 1, and g» = 252,

q1.92  __ qz q1 qz+3—p,q|—2+1’ q1,92 q1+3—p,q2—2+p
b*l,il‘lz ko, 262|r1 —V2|Z lp212l1 0,ip+1,i1 lp211 l2C011+1 i )

(2.15)
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q1.92 191,92 q1,92 92,91 92,91 .
Here the constants Cp INT lp IR lp,2,i1,i2’ lp,z,iz,il and lp 3i.it follow Equation (2.9) and

Equations (B.1) in Appendix B.
Proof. See Appendix B. O
Now we illustrate the structure constants for a few examples.

Example 2.11. The following examples are computed by using a Maple program:

152 N 2560 o 4256 +1384Bﬁ 35 o
785213 2 ' 503217 8 38709 7 T 1683 1.6 g "13.5
512, 512, 43200 528 o 132

B 3. B3 1=

[B6.1+B311 =~ 220420526 T 37603545 ~ 323323 564 T 637583 ~ 35 Blo:
el ooBl
Now we remark that
B, = A'Bl,

for all nonnegative integers [, i, k; this is due to the equality N(A) = 0. Further recall that A
is invariant under the sly-action. Yet the following equality demonstrates the complexity of the
structure constants:

- |2 256 o 512 416, 13125 10,
3007401 297297 14 42471 3 T 3927 02 1881 T 3 OO

Similar to [3, equations (3.8a)—(3.8h)], we further present some Lie brackets that they are partic-
ularly useful for our normal form results:

[BY.o. B! ;1= (I —)Bl. (2.16)

[By,0- B ] = (1 — 2i — DB}, 2.17)

[By.o.Bi (] =+ DB, (2.18)
=1+ '

BB, 1= 3 ey 219

Jj=max{g—2—i—p,—1}
3. Poisson algebra structure

We consider the ring of formal power series R[[x, y, z]] and define a Poisson bracket on the
ring’s variables by

{x,y}=x, {x,z2}=2y, {y.2g}=z 3.1
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Since f and g from R[[x, y, z]] have each a unique representation as formal power series in x, y,
and z, the Leibniz rule and bilinearity of the Poisson bracket are sufficient to uniquely determine
Poisson structure for all elements in R[[x, y, z]]. In particular, the Poisson bracket is independent
of alternative function multiplications in R[[x, y, z]], i.e., the Lie bracket of a function f with
g(hk) equals to the Lie bracket of f with (gh)k. Indeed, by the Leibniz rule we have

{f. g(hk)} — {f, (gh)k} ={[, gthk + gk{ f, h} + gh{ f, k} — gh{f. k}
—kg{f, h} —kh{f, g} =0.
Hence, the structure constants associated with monomials are given by
Hxiyjzk,xmynzp]
= (in+ jp —kn — jm) xI Ty =L AE P L0 (ip — km) xR LR (3 )
for arbitrary nonnegative integers m, n, p, i, j, k. Now define

; ad ™! (Z 1 AR , ,
bl i=——= "7 for—1<I<i+]1, andi, ke Ny, (3.3)
’ (0 + Dkiy1,2i42

where ady f :={x, f} and ad’ f := {x, adﬁ_lf} for f e R[[x,y,z]]and n > 1.

Corollary 3.1. The following formulas provide two alternative polynomial expansions for each
bfyk interms of x, y, z and A:

s 254+1,i+1
bzAk:_Z nj xsijzifsfjAk+j
" — (4 Dragri2i42
Ky §_2A+1,l+1
[1125(:_2 : J xs—/y2/+lzl—j—sAk’
— (04 Dieas41.2i42
s+1 25+2 i+1
b2v+l _Z xs—j+lzt—s—] Ak+],
o+ 1)K2s+2 2i42
sH 220
bis](—&-l :_Z J xsf]+1y2]Z17]7sAk’

— (+ Dias20i42

where

_ (et &) G+ i+,

2s+l,i+l
g 1(2i +2)7 '
(N2 +2),
(LIt 22+ 4+ 1)1(2s + 1)!
J :

T G- D@D =)
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j j . i+1,~.
2542041 _ (=12 HH s+ 1 G+ DT i+ D
J " X - -
(+DIQi+2),
(B2 2% (i 4+ D!(2s +2)!
’ T =+ DN ==

bl

Proof. Due to the previous lemma, the actions of ad, and ady on z' are identical. Hence, our
claim readily follows from Lemma 2.5. O

Now we define a vector space ‘B as
B :=span{by,+ > Bl bl | —1<I<2i+1,ikeNoy, B, R} (3.4)
The following two lemmas show that 28 is a Poisson algebra and it is Lie-isomorphic to 4.
Lemma 3.2. The space ‘B is invariant under the Poisson bracket and the linear map
V(B (-} > (&),
Wb ,) = Bj, (3.5)
is a Lie isomorphism.

Proof. By the Leibniz rule we have

(n—=1)
2

ad (7! = zad"(z') + nad, (z) ad" ! (x) () + . ad?(z)ad" % (z")

=zad"(z") +2nyad"~'(z") + n(n — Dxad" (7).
Due to Equation (3.5), we have W(x) =N, W(y) = % and ¥ (z) = —M. Further,
ad" (z" 1 AF) = ad” (1) AF,

The actions of ad” on z/T!'A¥ and ady on z' AKM are identified through W. Then, the proof
follows an induction on n, structure constants (3.1) and those governing the sly-triple M, N,
andH. O

Now we present a ring structure constants for ®5 so that ‘B is a Poisson algebra.

Lemma 3.3. The space *B is a Poisson algebra. In particular, let g1 = 2s1 +7r1 and g» = 2s2 + 1.
Then, the ring structure constants are given by

o S

i=bk Tk ™ g i ke 2 kg 20y
+r

s1ts2+ 152 q1.92

3 K2p+ir—r1].22p—oa+ir—rDCp.i

X 1
Qp—ox+irn—ri)~

p=max{a2,0}
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2p+ira—ri|-1
2p—or+ir—ri|-loi—p+ 152 )

Proof. The proof directly follows from (3.3) and the formulas given in Theorem 2.7. Indeed, we
have

b71- 1 602 1 qu(Zi)qu(Zj)Alirkz

_1 k 1 k . )
" bl L112Kg1,2i1Kqy,2iy

and

sthsp+ 1372 |

1 ritra
q1.92\j2p+|ra—r 2p—or+|ro—r o +
—— Z Cpl]Nplz 1|(ZP 2+r2— 1\)A1PL ]
112Kq1.20Kq2.20 ) 402,0)
-1
i112Kgy,2i K, 2i
+r
S1+52+L”T2J q1,92
_ K2p-+ira—r11.2@p=o2+in—riDCpii 2ptir—r -1
2p—o rp—r)~1 2p—oytir—ri|-1o1—p+1152)
pman(o2.0) Q2p—o2+1ra—r1)) p= p

The following theorem presents a property that is similar to the Hamiltonian cases, i.e., the
rate change of functions along with vector fields from 2 can be computed by the Poisson bracket.

Theorem 3.4. For each 1, i, k, we have

3
B, k= Z{xj, \P_I(Bf’k)}ej, where Xx1:=Xx,X3:=Yy,X3:=2. (3.6)
j=1

This representation for Bf’ ¢ Indicates that the family of vector fields from % and their associ-
ated dynamics are uniquely determined by their secondary Clebsch potentials. Furthermore, the
change rate of any formal power series in (x, y, z), say F : R — R, along a vector field v from
A is given by

dF B
=R v W), (3.7)

Proof. From equations (2.12), (3.5) and (3.3), we have

Bl =(—2i— 1)bf;18 + (I —i)bl, i +(l+1)bfk188
Then, the proof follows the Lie isomorphism (3.5), the formulas (2.16)—(2.18), ¥(x) = N
Y(y) = 2, Y(z) = —M, B(l) o =—N, and Bo(l) = —M. The vector field representation v from
4 in Poisson bracket form (3 7) directly follows from Equation (3.6), the linearity and the con-
tinuity (in filtration topology) of the Lie isomorphism 1, the continuity and bilinearity of the
Poisson bracket, and finally, the chain and Leibniz rules. O
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4. Geometrical features of integrable solenoidal vector fields
Definition 4.1.

e A vector field v is called solenoidal (nondissipative, incompressible, or volume-preserving)
when div(v(x)) = 0, and otherwise the vector field v is called generalized dissipative, i.e.,

div(v(x)) #0.

e When v(x) =V f(x) for a scalar function f(x), the vector field v is called a gradient or a
globally potential vector field. Examples of this are the gravitational potential, a mechanical
potential energy, and the electric potential energy.

e The vector field v(x) is said to be nonpotential (non-gradient) when there exists at least a
point x € R3 such that curl(v(x)) #0; e.g., see [43, page 1].

Theorem 4.2. For every v € B, v is solenoidal.
Proof. By the Leibniz rule and Bﬁ’ 0= AF Bﬁ,o’ we observe that
V.B} =V A'Bl = A"V Bl +V(ah) B, 4.1)

We claim that V - Bf,o =0 and V(A¥) . Bg,o = 0. Using Lemma 2.4, the partial derivatives of
N (z/+1) are given by

iNl+2(Zi+1) =+ 1) +2)i + DN (),

0x
%NHI(ZH'I) =20+ )i + DN (Z),
%W@”5=U+DW@) (4.2)

Equation (2.12) and Lemma 2.4 give rise to

(l+2)(2i—l+1)+ 2 —1) 1
Ki+42.2i+2 KI+1,2i+2 K1,2i4+2

veb=a+na+n< >M@5=a @3)

On the other hand for / = 2s, Equation (2.12) gives rise to

v(ab .8l k(2 — s + 1)z AR IN2S+2(Zi+1y k(- tg)yAk—lNZs+1(Zi+l)
’ (i + Disy22i42 (0 + Drs41,2i42

k(s 4+ Dx AFINZs (Zi+1)
- (@ + Dxs2i42

’

by applying Lemma 2.5 we obtain

2ki!(2s+1)!z (

n=0

G+ DG —n—s+1)—n(i —25) — (i —s+ 1)(s —n+ D)xs 7+ y2nzi=n=s+1 xk=1
2722 —2s+ DL —n+ DIG—n—s+ 1) '
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Hence, V(Ak) . Bé,o =0 due to
+Di—j—s+D)—jli—25)—(@G—s+1(s—j+1)=0. (4.4)
When [ =25 + 1, V(AF) - B is given by

2k(i — s)ZAFTINB (i) k(i — 25 — 1)y AFTINZS 2 (]
(0 + Dros+3.2i42 - (i + Dkos+2.2i42
k(s + 1x AK-INZSH1 (7i+1)
- (i + Drost1,2i42

k]

and using Lemma 2.5 we find

N

_y 22125 4+ DI + DIQ2i — 1 —25)k
T i—n—s— Dl —m!2i 212 + 1)

4G —5)2s+2)7 As+DQi—29% A+ 120 —29)]
G+1—-mC2n+1) G+l-n)i—-n—s) @Cn+DGi—n—s)
X

xs—i—l—ny2n+1zz—n—x Ak_l

N ki! (2i —28)25P3Q2i —1=25)! (=25 — D25T32i —25)!
(2i +2)! (i—2s—2)! (i—2s—1)!
x y2‘Y+3Zi_2S_1Ak_1.

Hence V(AF) - Bi,o = 0 due to the equation

(—9)Q2s+27  G+DQi—-29% ;  (s+1)Q2i—25)?
C+1=NCj+1) G+1=HGE-j—s) Cj+DGE—j—ys)
2i—s5)2i—1-=25) (i —25 —1)(2i —25)!

T G—2x-2! T i=2x-1n

(4.5)

Equations (4.5), (4.3), (4.4), and (4.1) conclude the proof. O
Theorem 4.3. Let i and k be arbitrary nonnegative integers and —1 <1 <i + 1.

e Polynomials bé,o and A are two first integrals for Bf’k, ie.,
Bl (b)) =0, and B (A)=0.

Indeed for every v e B, W1 (v) € B, and A are two first integrals for v.
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e A Clebsch potential representation for Bé ¢ IS given by
B, = AN(Vb] (xVA). (4.6)

Equation (4.6) provides an alternative representation for each vector field v in % by using
the primary and secondary Clebsch potentials A and W~ (v) € B.
e The polynomial functions bé,o and A are two functionally independent first integrals for B€,0~

e The ring of invariants for B;kl, Bi o and Bl.z!",:rl includes (A, z) (the algebra generated by A
and z), (A, y) and (A, x), respectively.

NH—l(ZH—l)

Proof. By Equation (3.3), Leibniz rule and Nz = {x, z} = 2y, we have [’5,0 = e

Hence, Equation (2.12) and Lemma 2.4 imply
Qi +1 =D+ 1Ak
-+ D@+
— i +2 = DN/ ZTHNIF ().

B 4 (b) =

L,

Now we claim that
lNl+2(Zi+l)Nl—l (Zi) + 2([ _ Z)Nl+l (Zi+l)Nl (Zi)
Equality (4.7) is trivial for the case / = 0. Let [ #£0, [ :=2s +r, r =0 or 1. By Equation (2.7),
we have
l .
Bi (b 0) =D fr(m)x! 22 Iy 2L
n=0

where f,(n) := Z’;:O F.(n, p) for all 0 < n < I. Now we follow Zeilberger’s algorithm [35,
Chapter 6] to prove f,(n) = 0. By some computations one has

—2@2n+3)Fo(n+ 1, p)+ (n —i — D) Fo(n, p) = Go(n, p+ 1) — Go(n, p), 4.8)

where Go(n, p) and Fy(n, p) are defined in Appendix C. Next, we add both sides of the equality
(4.8) over p forall 0 < p <n — 1. Hence Gy(n, n) is given by

(n—i—1)fo(n) —@n+6)fo(n+1)
+@n+6)(Foln+1,n)+ Fo(n+1,n+ 1)) — (n —i — D) Fy(n, n).

On the other hand

Go(n,n)=2Q2n+3)(Fo(n+1,n)+ Fo(n+ 1,n+ 1)) — (n —i — 1) Fy(n, n),
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and
—22n+3)fon+ 1D+ m—i—1) fo(n)=0.
Thereby,
-1
SO i
folmy == 1‘[ TR

j=0

also see [35, page 103]. Since

1, i-2s

B _ i—s s(i—s) —
foO=Fo0. p) = o e i —s =

1
s

fo(n) =0 for any n. Now let/ =2s + 1, i.e., r := 1. Thus

—GB+2n)Fi(n+1,p)+2n—i—DFi(n,p)=Gi(n,p+1) = Gin, p),

where G1(n, p) and F(n, p) are given in Appendix C. Hence,

—2n+3)fin+1)+2(n—i—-1)fi(n)=0,

f1(0) = F1(0,0) =0 and finally, fj(n) = 0. Hence, Bg,k(bg,o) =0and bg,o is an invariant func-
tion for Bﬁ’k. Equation (4.1) and Theorem 4.2 give rise to Bg,k (A)=V(A)- Bf.‘k = 0. Hence, A
is also a first integral for Bé, e

By Lemma 2.4,

1 A . .
Vbl = ———— (10 + DN @), 20+ DN'@), N1 @)
Ki+1,2i42

Since Bﬁ ¢ is tangent to the level surfaces of bﬁ 0 and A for any (x,y,2) € R3, there exists a
function Sf (%, ¥, z) such that

I l I
Bi,k = Si’kai’OxVA.
Hence,

DNTIE) +aN'E) | NEH
(8!, Vbl yxVA)-e3— Bl e3= 5, = : =0.
’ ’ ’ ’ Ki+1,2i+2 2(i + Dki2i+2

4.9)

Therefore by Equation (2.5),
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2s,i+1 2 1 1 2511vn2ntnv+l
Zn obn x"y nzl nost lS OZn lé‘n 1 Z

2(i + Dk oit2 KI4+1,2i+2
2s,i 2 1
OZn oé-n x5 ny )’lZl n—s+ _o
Ki+1,2i+2

Thus, Sf,o =1 due to

2s—1, 2
L T T 4.10)
Ki+41,2i42 20+ Dioivr
forall 0 <n <s,and ¢*" =0. The condition ! ;= 1 implies S! , = A*.

Since Bi o 7 0 for almost everywhere (except for a set with zero Lebesgue measure), the last
two claims are immediately concluded from the first and second claim, and Lemma 4.4. 0O

Define the grading function
8(Bl ) =i+ 2k, 4.11)

that is, the standard degree of homogeneous vector fields minus one. This makes the space
(%, [ —, —1) agraded Lie algebra. Hence, for N € Ny the vector space

N
By =span{Bly_ , 11=—1,...,2(N =2k) + 1,k =0,..., LEJ},

consists of all §-homogenous vector fields of grade N. For v € %, we define (also see [14,
Definition 3.2]) Terms(v) := Uileerms (v -ep), while

Terms (v - e,) := {All monomials contributing in Taylor expansionv - e}.

For an instance we have Terms(2x? + 3xy + 5) = {x2, xy, 1}. Thereby, for any two 8-grade
homogeneous vector fields v and vy, where 6(vy) # 6(v2),

Terms (v - ep) N Terms(vy - €p) =&, forany p=1,2,3.

When i,k € Ng, —1 <[ <2i+ 1, and N :=1i + 2k, we define a condition for a nonnegative
integer m by

4.12)

2N — 2k —1+1 2k +1+1
0<m< mm{L—JL TN J},

i
and next, a set Pl.’ by

P-{k :={(mi,ma,m3) :my =1+ 2(k —m3), my = N — 2m3, the condition (4.12) holds for m3}.

1
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Lemma 4.4. Let B) | € 2, (m1, my, m3) € P!, and p €{1,2,3}. Then,
1. Terms(By) s - €p) # @ when 1 # (3 — p)i +2 — p. Otherwise, Terms(By,} s - €p) = O,

ie. for (p,1)=(1,2i + 1), (p.) = (2,i) and (p,1) = (3, —1).
2. When Terms (B!, - e)) # &,

1] [ I _ pm
Terms(B,,,) ,,, - €p) < Terms(B; ; - ep) and P; , = P, ..

3. Let Terms(Bf’k) = Terms(Bﬁ/, «)- Then, natural numbers | — I" and i — i’ are even. Further-
more, the inequalities k # k',1 #1' and i # i’ are equivalent. In particular, k = k" implies

€i k=i k).
4. The set

{Terms (B}, - €,), Terms(BY - €,), Terms(B3,;" - e,), Terms(Bly ) |0 </ <2N.l# N},
is a partition for
U{Terms(vy - ), vy € £}

5. Terms(b} ) = Terms(byy.m;) # 2.
6. For any 0 # v € B and nonnegative integer N, there exists a unique polynomial vector

J J
Un_ok,0 € R{By_p o}

for each —1 < j <2N — 4k + 1 and 0 < k < min{ | X4 | 189 50 thar

> > Vo 0AX. (4.13)

Furthermore, v =0 if and only ifU'IjV—Zk,O =O0forall j, k,N.

Proof. The claim in part 1 directly follows from Equation (2.12). For claim 2, let Bf/, w be the
vector field in & with (I,i,k) # (I’,i’, k). Here we only consider the case p = 3. Using the
polynomial expansion for A, AF', Lemma 2.5, and Definition (2.1 1), the monomials appearing
in Bﬁ’ ¢ and Bf;  follow

P(x,y,2) = xSTmp y2n1+r+2(k7p1)zi7n17sfr+p1 ,
s’—n2+p2y2n2+r’+2(k’—p2)Zi’—ng—s’—r’—i—pz
9

Ox,y,z)=x

for some ny, ny, p1, p2, where l =2s +r and I’ =2s" +r’. Let P = Q. Then,
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s—s'=n1—na+ p2— pi,
r—r'=2(my—ni+k —k+ p1— p2),
i—i'=n—ny+s—s +r—r' +py—pi1. (4.14)

By substituting the first equation in (4.14) into the third one, we have
i—i'=1-1. (4.15)
Since the vector fields Béy « and Bf; v have the same §-grade,
i—i' =2(k'—k). (4.16)

Therefore, i — i’ =1 —1'"=2(k' — k) and i + 2k =i’ + 2k’. Hence, the inequalities i’ > 0 and
—1 <!’ <2i’ +1 are equivalent to the inequalities (4.12) on m := k’. The equality Pi{k = P s
is due to the definition.
Part 3 follows equations (4.16) and (4.15). The claim 4 is a direct corollary of the claim 2.
The proof of part 5 is similar to claims 2—4 and the claim is consistent with Equation (4.6).
Finally for the claim 6, consider v:= ) 5_,wy for wy € ZBy. Then by claim 5, for any N
we have

2N+1

— J J j

= E Wy, Wy -ep € spanTerms(By - ep).
j==1

Now we Taylor-expand wf;, in terms of A, that is,

min{[ 25 ) 14
J _ j k
Wy = Z UN—zk,oA J
k=0
where U}(f—zk,o - €, € span Telrms(B{v_Zk_’0 €p). “4.17)

Hence, vl N —2k.0 does not share any monomial vector field with any B-terms except B/ N-2k,0°
This is because of the claim in part 2 and that we have already excluded the powers of A in

(4.17). Therefore, the expansion of v’ N _ax o in terms of the B-term generators of % only includes
J
By_2ko O

The following definitions (for the spaces % and «7) and its subsequent two theorems describe
two families of sly-invariant vector fields. These two families provide a decomposition for all
three dimensional vector fields for normal form derivation of three dimensional nilpotent singu-
larity. However, further study of these two families are beyond the scope of this paper. Let

% =span{ Yl Ol | —2<I <20 +2.0 ke Nl € R}, (4.18)

and
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o :=span{ Y al AL [0<I <200 keNo,al, e R}, (4.19)
where

! 1 142, i Ak 0 . .
Cl,i=——N*2(AF ), for —2<1<2i42,i,keNy:=NU{0}, (4.20)

’ Ki42,2i+2 ox

1 .

Al == —N\(Z A*B), for 0<1<2iikeNy:=NU{0}. (4.21)

’ K1,2i

By Equation (2.4), we have
Cl . AkNH-Z(Zi—H) i . ( +2)AkNl+l(Zi+l) i (+D{d+ Z)AkNl(Zi—H) i
ik Kis22i42  0x (20 =1+ Digpipip2 0y (20 =1+ 120 — 14 2)kp 242 92
xAkNl Zi 9 AkNl Zi 9 ZAkNl Zi 9
w o EANG D ANGD b AN o

KT ki ox Ki2i 0y K2 0z (%-22)
Theorem 4.5. For all —2 <1 <2i+2,i,k € Ny,
div(C{ ) =0,  VA-C},#0. (4.23)
Proof. By Equation (4.2) and definition Cf’ ©» e have
V-Cly=U+DU+2)G+1)
y 1 2 1 N (e,

K[42,2i42 B Kig1,2i42Q2i —1+1) a K1 2i422i =14+ 1)2i —1+2)

Since the coefficient N (zi) is zero, div(Cf’k) =0foranyi € Ng,and —2 <1 <2i +2.
When [ is even, say [ = 2s, by Lemma 2.5 we have

(25 + 21 + 1)!(2i — 2s)! i gnys=n+lyonji—n—s+l
Qi +2)! (s —n+ D2 —n —s)!

n=0

[
VA'C‘,O:

1

(25 +2)1G + 1)!(2i — 29)! Z 4nxs—ntlyni—n—st1
Qi +2)! (s —m)!2em!i —n —s + 1)

n=0

4(2i —2s)!(s + 1) i (25 + DI + D122~ xs—ntly2nzizn=s+1
(2i +2)! (s—n+D!I2n—DIG—n—s+ 1)

Since the coefficient of x*+1z/=5+1 is

(i +2)! (20 —25)! (25 +2)!
Qi+2)!(s+ DG —s+1)!

’

A is not a first integral for Cf ¢~ The argument is similar for when / is odd. O
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Theorem 4.6. Each three dimensional vector field v can be uniquely expanded in terms of formal
sums of polynomial generators Ci o Bﬁ’ . and Ag, o Jrom €, B and o, respectively.

Proof. This is a straightforward corollary of Theorem 2.9, Lemma 4.4, and Remark 4.7. O
Remark 4.7. Given Lemma 4.4, the same statements trivially hold for other sl,-generated vector

fields from spaces ¢ and <7. In particular, for any v € o/ and w € €, there exist uniquely
determined constants ¢, v« and al . SO that

so 2N min{| 2] 147

v=>y Y > aly Ao oA, (4.24)

N=0j=0 k=0
oo 2N+2min{ 252114
_ i o k
w=)y_ cy 1 C_a0A* (4.25)
N=0 j=—2 k=0

The following theorem provides a concrete characterization for vector fields in 4.

Theorem 4.8. Let v be a three dimensional vector field. The conditions div(v) =0 and v(A) =0
hold if and only if v € A.

Proof. Given Theorem 4.2 and Theorem 4.3 (first item), we only need to prove the only if part.
Let v=u+ wc + wya, where u € &, wy € €, and we € o/. Hence, V - (we + wa) =0, and
wc (A) +wa(A). By equations (4.24) and (4.25),

oo aN min(LZFL) 5 an2minf G20
we+wa=)] (Z wey o od + ) Z wA'le—zk,oAk)’
N=0 j=0

k=0 j=—2

where wC;V—2k,0 € R{Afv—zk,o} and wA{v—zk,o € R{Cf\f—zk,o}~ Since

Terms((R{AR_y, o} + RICA oy, o}) - ) N Terms(R{AZ . o} +R{CE 5 o)) -€,) =2

forall p=1,2,3 when (ji, k1) # (j2, k2),
div wC;V—Zk,O + div wA?V—zk,O =0 and wcf\,_Zk’O(A) + wAfv-zk,o(A) =0

By Theorem 4.5, div wA‘]’;, 2.0 = 0 and so div wc{\, 2.0 = 0 for all j k, N. By Lemma 2.4,
Equatlon (4.22), and item 6 in Lemma 4.4, the condition divwc’, N_2k0 = 0 implies that
we’, N_2k0= 0 Thereby, wa N 21.0(A) = 0. Now Theorem 4.5 concludes the proof through the
equation wAN—Zk,O =0forall j,k, N.Indeed, wgs =wc=0andv=ueXB. O
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Theorem 4.9. The following hold.

1. The set {Terms(blN o) i —1 <I<2N + 1} forms a partition for By = w1 (By).
2. For p=1,2,3, and (x1, x2,x3) :== (x, ¥, 2),

{xp, Terms(bf’k)} C Terms(ng,rf_p).

s

When (p,1) # (1,2i + 1), (p,1) # (2,i) and (p,1) # (3, —1),

Terms{x,, Terms(bﬁ,k)} = Terms(b?,;z_p).

3. kerady = R[[x]], kerad, = R[[y, xz]], and kerad, = R[[z]].

Proof. The first item follows items 3 and 4 in Theorem 4.4, and Lemma 3.2. The second and
third claim follows from the structure constants and Lemma 3.2. O

An alternative representation for vector fields in 2 are based on the vector potential. Each
solenoidal vector field v has always a vector potential that is unique modulo gradient vector
fields. Vector potential frequently appears in the classical and quantum mechanics, e.g., see [25].
Vector potential is called magnetic vector potential in electrodynamics while the curl of the
magnetic vector potential is called magnetic field; see [4].

Theorem 4.10. There exists a vector potential qbf & such that Bi 0= curl(qbf i), where

AkNl+1(Zi+l)

(z, =2y, x). (4.26)
KI+1,2i+2

¢l =0l VA=

Proof. From Equation (4.6) and the equality V f xVg = V x f Vg for all scalar functions f and
g, we have

Bl , = Vx (b}, VA).
Thereby, bf, « VA is a vector potential for Bf’ e O

Remark 4.11. An alternative vector potential for solenoidal vector fields is available through the
computational approach on [26, page 21]. Indeed, there exists a vector potential <I>ﬁ7 & such that

Bf’k = curl((bik), where
Ak
q>§k= : : X
T+ DEE+I+3)

((z — DN (4 DN (Y ey

+ Qi +1—=DNT2HY 4+ DaN (T ey
(1 = 2i — DYNF2(ZH) 4 (1 — N2 (i eg). (4.27)



430 M. Gazor et al. / J. Differential Equations 267 (2019) 407-442

In particular, @é’o = (—A,0,0). The proof here follows [26, page 21]. Indeed, define

1

P(X) :=/tB§’k(tX)dt=
0

;BI»
Qk+i+3) "

where X := (x, y, z). Then, a vector potential for Bﬁ’ & 18 given by P(X)x X. Hence, Equation
(4.27) is computed through Equation (2.12).

We further recall that a vector potential for a given solenoidal vector field is generally unique
modulo gradient vector fields. For instance by equations (4.26) and (4.27), vector fields

ol = (Y2 _xz
1,0 = 4 5 "4 s

<I>}0=l(xz+2y2> 1z,—y,lx )
’ 3 2 2

are two different vector potentials for B%,0~ Here, ¢11,0 +Vf= d){’o where f = 1—lzzxy2 — %y“ +

1.2.2
ﬁXZ.

Nonlinear vector fields from % are rotational vector fields; i.e., they have a nonzero curl.

Theorem 4.12. All vector fields from 98 have a non-zero curl. In particular, the null space of curl
operator on the formal sum of vector field types (2.11) is given by RBg 0

Proof. Note that curl(Bg’O) =0. Let v € #Z and curl(v) = 0. By Equation (4.13), Lemma 4.4,
linearity and continuity in filtration topology of curl operator,

oN-1 min{[ NSy Ny

J k J J
Z Z Un_ok,0A",  Wwhere vy _y o €R{By_y ol
N=0 j=—1 k=0

and curl(vjj\,_zk’oAk) =0 forall j,/, N. Now let curl(Bﬁyk) = 0. Hence, all three components of
curl(Bﬁ’ i) are zero. The first component of curl(Bf’ &) 1s given by

P (l + 1)AkNl(Zi+1) 9 (l _ l)AkNl+1 (ZH-I)
ay (i 4+ Dkyoit2 dz (I + Dki12i42

and by Lemma 2.4, we have

A+ DANI ) 29k + DAFINIGTY) (i — 1) AN (21
B K1,2i+2 (i + Dk it - KI4+1,2i+2

k(i — Dx AFINFF i+
G+ Dagiaie

VxBﬁyk-el =

0. (4.28)
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Since Terms(AMN/~!(z%)), Terms(A*~IN/(z/*1)), Terms(AKN'* (z1)), and Terms(N'*! (z"+1))
are pairwise disjoint sets of monomial terms, Equation (4.28) holds if and only if

I+ =k(+1)=@G—-1)=k(i—-1)=0.
The later is equivalent with i = k =1 = 0. This completes the proof. O

Example 4.13. Let

9 9 9
=00, —3A% = —3xy?— —3xyz— —3y’z—.
v 0.1 2,0 4 0x 1Yz ay Y Zaz
Then, v(A) =0 while div(v) = —3xz — 6y* #0.
Consider the vector field

. 0
Cl__,g — ZZHE’ for any i € Ny.

This family has two first integrals of y and z while C[.Tg is also solenoidal for all i. These vector
fields do not generate a Lie algebra with the nilpotent linear part B(l)’o, indeed,

[C;5.Cigl=0.  [Bfy.Cigl=—2(i+1)C;y.

This indicates that the family of vector fields in & does not represent the set of all solenoidal
vector fields with two independent first integrals.

5. Normal form classification

This section is devoted to obtain the normal forms of the vector fields from and within the Lie
algebra A. In other words, the normal form vector field of a vector field from % remains a com-
pletely integrable solenoidal vector field, where A is one of its first integrals. Alternative normal
form vector field representations such as vector potential and the Clebsch potential normal form
are also provided.

Theorem 5.1. The vector field (1.1)—(1.2) is either linearizable in the normalization process or
there exists a natural number p so that the normal form of the vector field (1.1)—(1.2) is given by

d d 0 d
= X — 2y + 2P (e 4 2y —
w xay yaz+z (z8y~|- yax)
00 [HTP] 3 3
b i — 2N\k=2i+p ., Y Jy— , 5.1
+k—2p+l ;:o i k2 (xz2—y°) (zay + yax) (5.1

where b; ;. € R. Furthermore, the normal form vector field (5.1) can not be further simplified, that
is, the normal form coefficients are uniquely determined in term of the original system (1.1)—(1.2).
In addition, the secondary Clebsch potential normal form is given by
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I(x,y,2)=x+

o [2F
b')k ; k—2i+
P 1Z”+1 + Z Z LR it (g — y2) TP (5.2)

Here, the polynomial A = xz — y? stands for the primary Clebsch potential.
Proof. The normal form
o
wi=Bj,+ Y bixB;}. (5.3)
i,keNg
is readily available given the s[>-style normal form and the fact that ker(ady) = span{B; kl}; for
more information see [2,3]. Let p :=min{i | b; o # 0} and p > 0. Define a new grading function
by 8(Bﬁ o) =1p +2i +k.Then, % is a §-graded Lie algebra and
._npl -1
]Bp = BO,O + bp’OB[?,O S %P'

Linear invertible transformations can be used to rescale the coefficient b, o into b, o := 1. Fol-
lowing [2,3] we define

I:=ad(By ) o ad(B)). (5.4)
By the structure constants and Equation (2.19),

FB! ) =(g—2i —1)(g+2)B,

s—1+[ 5L al—l,qBZj+|r—1|—1 1
Z JoPE T2 j—q+14i+p+r—1],s—1+k—j+[ 4 ]

Q2j+r—1+D"!

+ bp,()
j=max{g—2—i—p,—1}

Hence for any i and k when g = 2i + 1, there is a possibility of a vector polynomial in kernel I'.
This is due to a similar argument used by [2,3]. On the other hand

b?f']j—l — —Xi+1Ak,
and
W((b0) AN =B,
in addition,
B AR = w (07 B)) A = Wx =2 AN elert

These polynomial vectors are extended to a symmetry for the normal form vector field (5.1),
through

W ((\I,—l (w)i ! Ak) .
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This proves that there is no possibility of any hypernormalization beyond the sl,-style normalized
vector field (5.1). O

Corollary 5.2. The following presents five alternative representations for the normal form (5.1):

1. A formal sum of B-terms:

[k+17]
-1
w —Boo+B ot Z Z bi kB; jyp—2i-
k=p+1 i=0
2. The secondary invariant:
k+p
00 ]
U(x+z + Z Z bi k2 T (xz — yHFP=H),

k=p+1 i=0

Here, V is the Lie isomorphism given by Equation (3.5).
3. Vector potential:

k;p k l+1
w —curl((x + Pt 4 Z Z )(z, —2y,x)).
k=p+1 i=0
4. Functionally independent Clebsch potentials:
k+p .
oo [=F ] i+1 o k+p—2i
T (xz—y%)
wi=V(xz — xV( p+l bi.k
(xz —y%) x+z77 + Z Z F
k=p+1 i=0

5. Poisson bracket:

3
W= Z{xp’ I(_X, Vs Z)} “€p,

p=1
where I(x, y, 2) is the invariant given in Equation (5.2). Furthermore, {I(x, y, 7), A} =0.

Proof. Follow Equation (2.12), Lemma (3.2), item 2 in Theorem (4.3), and Theorem 3.4, re-
spectively. O

The normal form vector field (5.1) generally can not be further simplified. However, the sec-
ondary invariant provides a possible reduction in its dimension and then, a further normalization
is possible when we consider a subfamily of normal form vector fields given by
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o

9 9 9 9 LD 9

wi=—x——2y—+z/(z— +2y—) + Z biz'(z—+2y—). (5.5)
ay 0z ay dx it ay ax

The next theorem deals with the dimension reduction and also a further hypernormalization.

Theorem 5.3. There exists a near identity transformation so that the vector field (5.5) is trans-
formed into the normal form vector field

3 p+2 = bi(i+2) 3
=2V — + | X+ ——=zP" ¢ 7 . 5.6
v 0z P+l l,;l i+ 1 3% (56)

Furthermore, X (t) := c is always constant. Hence, the normal form system (5.6) has a Hamilto-
nian

1 b
H(Z,Y):=—-AX,Y,Z)=Y*—cZ + ——7P1? —_7it2 5.7
(Z,7) ( ) Z+ - +l§+li+l (5.7)

On the invariant manifold I(x, y, 7) = 0, the normal form vector field takes a further hypernor-
malization given by

PR 9
) — oy 2 N AR 5.8
v 8Z+§;’a' 37 (5.8)

where a; =0 fori=(p+ 1)(m + 1), m € Ny.

Proof. The key idea is to use the secondary Clebsch potential (5.2) as a near-identity transfor-
mation, i.e.,

o]

b: .
p+1 ! i+1 . 59
z +i—zp+1i+lz ), 2 (5.9

1
XY, Z2)=|x+
( ) p+1

Hence, X (¢) is constant. Then, the normal form vector field (5.8) is given by

(P+2) i (i +2)bi

h:=2B} — B! -1
0Bt it1

i=p+1

in terms of notations used in [28]. Hence, the second claim follows [2, Theorem 8.9] (but with A
and B interchanged). O
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5.1. Truncated normal form coefficients

Consider a cubic-degree truncated triple zero vector field

d 3 : 3 d d
— i K (g - -
vis=—xg ~ 23 +i+j§+k:2xzyjz (“”"ax +b’f"ay +c,jkaz) €A, (5.10)

where a;ji, bijx and ¢;j; € R. By Theorem 4.8, div(v) = 0 and v(A) = 0. The first one implies

1
co02 = — = (a101 + bo11), axoo = —b110,
2
co11 = —aiio, c200 =0,
€020 = 2b110, aio1 = bo11,
apo = 2bo11, apo2 =0,
c101 = —(2az00 + b110), ao11 = 2booz,
c110 = 2baoo, b1o1 =0, (5.11)

while v(A) = 0 concludes

c111 = —2(az210 + b120), bo1a = —2co03,

bi11 = —2(azo1 + c102), ao12 = 2bgos,

€210 = 2b300, a0 = —co21,

aiy = —2by1 — 2co12, a1 = —4coo3,

bz10 = —2a300, a2 = —bo12 — 3co03,

c201 = —3azoo — b210, ao3o = 2bga1,

030 = 2b120, a1 = —cio2,

az10 = —2(b201 + b120), c120 = —4azoo-

300 = apo3 =0 co12 = —2(bo21 + b102) (5.12)

Hence, the vector field (5.10) can be written as

| =1 |, 0 RO 1 al 2 2 3 o3 el | g—lgp-1
v=Bgo+d oByo+diBio+dioBio+dioBiotdioBiotdy By +d20B0
| al 0 RO | nl 2 w2 3 o3 4 i 5 05 0 RO
+dy 1By, 1 +dy 1Bo 1 +ds 0B o+ d5 0B g +d5 0B 0+ dy 0By g +d50B5 o+ dy 0B o
(5.13)

where
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— _ 1
dl,(l) = boo2, do,} = §(4b102 —bo1),
dzl,o = (3bo21 + 3b102), d%o = —(co21 + c102),
dll,o =ai10, d;,O = —b30p,
d?,o = 2bo11, d§,0 = 3aszoo,

1

dy, = g(b120 —4b01), di o = —bao,

2 0 1
di g = —2b110, dy,1 = 5 (coa1 —4c102),
dg,o = —3co03, dio = —(3b201 + 3b120),
d;g =bgo3.

Proposition 5.4. The quartic truncated normal form for Equation (5.13) is given by

9
+ (Zy((xz — )bz 4+ + 2(B3* + b3z + bé))) —

a ad
-y —2y—
w X y ax

ay 9z

3
+(z(xz — YD (biz + b)) + 22 (3% + bz + b)) 5

whose first integrals are A = xz — y* and

2 3 2
Z b
10y, ) =x = blzy? + 2 (bixz = byy? +4bg + 26027 + 2% + =02),
where
1 _
by = boo2,
booaatio  3boii?
b2 =b - ,
0 003 + > n
2
a0 biioboir  baoborz 1
pY = - —(@b102 — boa1),
1 0 5 5 + 5( 102 — bo21)
1 aino®  brio’bonz . (dero —coandborr . bo12baoo
378 7 15 21
12(bao1 + b120)b 8b110¢
+ (b201 + D120)bo02 . 8br10coos
105 21
+ 12(bo21 + b102)ario  4baooboos " 2bo11(co21 + c102)
105 7 35
_ 2baoboozaito  2biioboriaiio
21 63

(4b102 — bo21)ai10
15 ’

2
+§(b120 — 4b201)boo2 +
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b3 2boozaiio  6b110boo2bort | 4(3bo21 + 3b102)boo2
0T 3 5 15

_ 6baooboo2” n boo2a110”
5 10

=+ 2co03b011-

The vector potential normal form for vector field (5.13) is given by

1 2 1 3
by > pon. B3 Pia 2 By 4y
(x+ 5+ Az + 227+ S AL+ 22 (2, =2y, ).
2 3 2 4
Proof. The normal form coefficients are derived using an implementation of the formulas in
Maple. O

Appendix A

Proof of Theorem 2.7. A polynomial expansion for the left hand side in (2.8) is derived in Equa-
tion (2.7) while by using the first equation in (2.5), the right hand side is given by

+r
sisa+[ 1572
2 ci ; 2p+lra=ril,.2p—o2+lr2=ril _p—n  Ira—r1| p*‘TZ*nAsl+S2*P+n+L¥J
piLj Mn X y Z .

p=max{o,0} n=0

Given Lemma 2.5, we remark that N22+r2=71l(z2p=o2tn=rly — 0 for p < oy.
When r1r, = 0, Equation (2.8) is equivalent with the following polynomial equation

min{s;+s2—02,51+s2}
~q1,q92 _s1+s2—n _i+j—(si+s2+r1+r+n) an
nn,i,jxl 21 it] (s1+satritratn) o
n=0

min{s| +s2—02,51+s2}
n=0

S1+s52
> § : ci42 2p+|r2—r1\,2P+i+j—2(51+S2)xs|+s2—n

42 i+j=(s1ts2tritratn) An
p.i.j Int+p—(si+s2) '

Z
p=s1+s2—n

Hence for each i, j, s1, 52, and 0 <n < min{s; + s2 — 03, 51 + 52}, we have

n
~q1,92 __ q1+q2—2k,i+j—2k ~q1.92
nn,i,j - Znn—k CSH-Sz—k,i,j'
k=0

These introduce a family of upper triangular linear matrix equations. The determinant of the
coefficient matrix is given by

min{s|+s3—02,51+52}
q1+q2—2n,i+j—2n
Mo #0.

n=0
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These together with the Equation (2.6) give rise to

s1+s2—p ~q1,q_2 (p 4 1)‘;1+S2—[J—r+(p — oy + 1— |r2 + rll)i|+S2—P—r

N
q1.92 __ ri,J
C[?,i,j - Z 2p+|ra—ri],2p—o2 12 p+r—(s1+52) (4 ) 3 s1+s2—p—r"’
=0 Mo (s1+s2—p—r)! 4p —202+3),

Now let 7| = r, = 1. By substituting y> = xz — A into Equation (2.7), N9! (z/)N?2(z/) is given
by

min{s;+sy—02,51+s2}

N7 (2N (27) = Z (@i = j)x“‘“z_”“z’*’ —simsmn=lAn

n=1
~q1,q92 _s1+s2+1_i+j—s1—s2—1
+ nO,i,j X 1 2 z J 1 2
~q1,42 xmax{O,az}Zmax{—az,O}Asl+sz+1'

- nmin{5|+sz—62,s1+S2},i,j

Hence the family of linear equations and its solutions are derived by

n
~q1.92 _ ~q41,.92 __ q1+q2—2k,i+j—2kcq1,qz
Maij — Ma—1,i,j = n—k s14s2—k,i,j°
k=0
and
s1+s2+1—n ~q1,92 ~q1,92 s1+sr—n—r+1 s1+sy—n—r+1
q1.92 .__ R (nr,i,j B nrfl.,i,j)(n + D (n—oy— 1)
ni,j " _ 2n,2n—op s1+so—n—r+1"
= (182 —n—r)R2ntr=Gikat by (4n — 207 — 1),

respectively. 0O
Appendix B

The following notations are used in Theorem 2.10:

ag . Qi —q1+ 1)@= Dj
1,3,i1,i2 (il + I)Kq2,2i2+2Kq1+2,2i1+2’
qi.q2 . _ _2(‘]2)%(1.1 —q1)

2,3,i1,i2 (il + l)qu,2i2+2Kq1+l,2il+2’
e __ @+D@+D

B3 (i1 + 1)"(12,2i2+2"q1,2i1+2’
q1.92  ._ _(QZ)%(Zil —q1+ 12 —q2)
1,2,i1,ip *

- . 9
(1 + Digyt1,2ip+2Kg,+2,2i1+2

Qg —2q2(i1 — q1)(i2 — q2)
2,2,i1,ip °

(i1 + Dkgy+1,2ir+2Kg,+1,2i1 +2
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e (g1 + D2 —q2) _ B.1)
3BT () 4 DKy 41,20+2Kg) 20142

Now we present the proof of Theorem 2.10.

Proof of Theorem 2.10. By equations (2.12), (2.8), and Lemma 2.4, the third component of

q .
le ki Bir ey is given by
3
, ky+k 3—p i1+l -3 i
Z!fizhizA 1+ 2Ntll+ p(Z!1+ )qu +.D(Z12)
p=1
sits2+ 152 3 942 q1+3—p,q2— 3+PN2j+|r27r]\(Z2j7(72+1+\r27r1|)
— Z Zp3lltz Jii1t1,ip
B oy —| 12 ’
j=max{o—1,0} p=1 AT S
where lzl’;jizl i for p =1, 2,3 are defined by equations (B.1). Now using the latter and Equa-
92 a2 q2 :
tion (2.12), the third component of [le Ky Bl2 kz] le ki Biz,kz — Bl2 k le ki is given by

sis+ 152 ) +3—p.q1 =3+ +3—p.r—3+
$3_ a2 o tIpai=3tp g3 gan@  onit3opar=3tp

p=1 P,3lel Jriz+Lii p=1 p,3,!1 ir~j,i1+Liz
j=max{or—1,—1} (2] + |}’2 - | + 1)(2] +1- 03 + |}"2 - }"1|) (K2j+|r2—r1|,4j—2<72+2+2|r2—r1|)7

2j+lra—r1l

. e3
) . +
2j—oa+lr—ril,o1—j+ 32| ’

when 2j 4 |r2 —r1| + 1 # 0. The second component of Bl y jzkz is given by
3 . .
Zl?zl,fizhiz Akl+k2Nq1+3—P(Z11+1)Nq2—2+P(Z12)
p=1

Sl+82+L¥J 3

_ q1,92 q11+3=p.q2=2+p\g2j+lra—r1|+1 2 j—0a+|ra—r | +1\ A 01—
> lp2ivinClivt1in N (z )A

j=max{op—1,—1} p=1

q1,92
p,2,i1,

the second component of [le Ky Bl2 k| is given by

where the constants / , are defined by equations (B.1). Again through the Equation (2.12),

+
si+s2+ 152 ] y3_ e qu+3—p,qz—2+p_23 D1 n3-pa1=2+p
2 : =1"p,2,iy,ip ~ j+lr2—r1l,i1+1,ia p=1"p,2,ir,i1 ~ j+lra—ri1l,i2+1,i

. _1 . . _
j—martopel,—1} 02(2j +1 =02+ r2 —riD) = (K2jt141m—r11,4j—200+242lr—r1])

2j+ra—r1l
B2/ Y (B2)
2j—0a+lra—ril,o1—j+L-5=]

On the other hand when 2j + 1 4 |r; —r1| #0
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3@ c03mpa@=2tp N3 ga2qr ~@F3-p.aqi=2+p
q1.q2 __ —~p=1"p2iy,ir " jH+lr—ril,i1+1.i2 p=1"p,2,iz,iy ~ j+Irp—ril,i2+1,i

PR oy (2 4+ 1 =00+ [y — i) T H K2 j 14— | 4j—209 4242 —r )

We remark that the third component of B_ (lrzfl o141 is always zero and this corresponds to the
condition 2j + 1 + |r, — r1| = 0. Indeed, this condition occurs when j = —1 and

(g1:=2s1and g :=2sp+1) or (q1:=2s1+ 1andgq:=2s7).

Hence, the constant a?'; ;, are derived through Equation (B.2). Now the proof is complete by

—1,iy,i
q2

derivation of the formula for the first component of [B?l1 ko Bl2 k2] as

rit+nrn
N 5 —_—5
1+st+l=7=) y3_ qu+3—pqqz—l+p_23 19241 c2+3-p.ai—1+p
p=1"p,liy,ip " j,i1+1,ip p=1"p,1ip,i1 ~ j,ir+1,iy

1 Qj+1=200+1r —rD@j+ 1 =03 +1ro — ri DT (2 j g2 ry—r |, 4j =209 424201y —r )]

j=max{op—1,—

2j+lra—r1l

. -e]
. . +
2j—oa+lra—ril,o1—j+ 132 | ’

where
g . —@+DICH—qi+DQRi—g2+1)
LLig ° (i1 + DKgy42,2ir 42K, +2,2i142 ’
a2+ —q)Qir—q+ 1)
SR (i1 + Dkgy 42,2 42K, +1,20 42
a.a . (@1 +1)QRir—g2+1)

3L TGy 4 Dgo 42, 2ip + 2k, 2142

and the equality

23 (a2 ql+3—p,qz—1+p_23 [42:41 q2+3—p.q1—1+p
91,92 _ p=1"p.Liyip~j,i1+1.ip p=1"p.Lip.,iy ~j.ip+1.i
1,02 . . - —1°
/ Qj+1-200+r2 —riDQj+1 =02 +1r2 = riD 7 2 j 4241r—r |, 4j—200+2420rg—ry )
Appendix C

Definitions of Fy(n, p), F1(n, p), Go(n, p), and G1(n, p) in Theorem 4.3 are given by:

@)+ DI(2s + 1)1227+2
Cpls—pPli—p—s)ls—n+p—-—D!2n-2p)li+p—n—s—1)!
+DGi+p—n—s5)"1 (-29)Gi+p—n—s)""
((s—p+1)(2n—2p+1) Qp+D(s+p—n)
(i—s+DGi—-p—s+17!
2n—2p+D(s+p—n) >

Fo(n, p) =
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221G 4+ 1D)1(2s + D125 + 2)!
s=—n+pCp)s—p)Cn=-2p)li—p—s—DWi—-n+p—s—1!
((2s+3)(i—n+p—s)—1 20—2s—D(@i—p—s)!

(s+1-p)2p+1 (s+1-=p)2n—-2p+1)
_(2i+1—2s)(i—p—s)—1>
Qp+D(+1—n+p) /)’
_ p(2s—i)(2ip+25> +5p — 2is — 2i —2n —5)

Fi(n,p)=

Golm, p) = i —2p+3) (i—p+ D 2p)
1
P DI@n—2p+ DG —p—stDtp—n—Dii+p—n—s—DI
PP 225 +3)(2i =25+ 1)(i —25 — 1)
Gi(n, p)=—
i—p—5)2n-2p+1)s+1—pn—p+1)B+2n—-2p)
2il(i + DI(2s + 1)!(2s +2)!
= p=s—DICn =26 -l —n+p—s—Ds—n+p)
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